982 resultados para Conformal Field Theory, Entanglement Entropy, Integrable systems
Resumo:
This paper examines the equilibrium phase behavior of thin diblock-copolymer films tethered to a spherical core, using numerical self-consistent field theory (SCFT). The computational cost of the calculation is greatly reduced by implementing the unit-cell approximation (UCA) routinely used in the study of bulk systems. This provides a tremendous reduction in computational time, permitting us to map out the phase behavior more extensively and allowing us to consider far larger particles. The main consequence of the UCA is that it omits packing frustration, but evidently the effect is minor for large particles. On the other hand, when the particles are small, the UCA calculation can be readily followed up with the full SCFT, the comparison to which conveniently allows one to quantitatively assess the effect of packing frustration.
Resumo:
We present an efficient strategy for mapping out the classical phase behavior of block copolymer systems using self-consistent field theory (SCFT). With our new algorithm, the complete solution of a classical block copolymer phase can be evaluated typically in a fraction of a second on a single-processor computer, even for highly segregated melts. This is accomplished by implementing the standard unit-cell approximation (UCA) for the cylindrical and spherical phases, and solving the resulting equations using a Bessel function expansion. Here the method is used to investigate blends of AB diblock copolymer and A homopolymer, concentrating on the situation where the two molecules are of similar size.
Resumo:
Hamiltonian dynamics describes the evolution of conservative physical systems. Originally developed as a generalization of Newtonian mechanics, describing gravitationally driven motion from the simple pendulum to celestial mechanics, it also applies to such diverse areas of physics as quantum mechanics, quantum field theory, statistical mechanics, electromagnetism, and optics – in short, to any physical system for which dissipation is negligible. Dynamical meteorology consists of the fundamental laws of physics, including Newton’s second law. For many purposes, diabatic and viscous processes can be neglected and the equations are then conservative. (For example, in idealized modeling studies, dissipation is often only present for numerical reasons and is kept as small as possible.) In such cases dynamical meteorology obeys Hamiltonian dynamics. Even when nonconservative processes are not negligible, it often turns out that separate analysis of the conservative dynamics, which fully describes the nonlinear interactions, is essential for an understanding of the complete system, and the Hamiltonian description can play a useful role in this respect. Energy budgets and momentum transfer by waves are but two examples.
Resumo:
We present evidence that large-scale spatial coherence of 40 Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150 ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.
Resumo:
Expert systems have been increasingly popular for commercial importance. A rule based system is a special type of an expert system, which consists of a set of ‘if-then‘ rules and can be applied as a decision support system in many areas such as healthcare, transportation and security. Rule based systems can be constructed based on both expert knowledge and data. This paper aims to introduce the theory of rule based systems especially on categorization and construction of such systems from a conceptual point of view. This paper also introduces rule based systems for classification tasks in detail.
Resumo:
The stability of ternary blends of two immiscible homopolymers and a block copolymer compatiblizer depends crucially on the effective interaction between the copolymermonolayers that form between the unlike homopolymer domains. Here, the interaction is calculated for blends involving A and B homopolymers of equal size with ABABdiblock copolymers of symmetric composition using both self-consistent field theory (SCFT) and strong-segregation theory (SST). If the homopolymers are larger than the copolymer molecules, an attractive interaction is predicted which would destroy the blend. This conclusion coupled with considerations regarding the elastic properties of the monolayer suggests that the optimum size of the homopolymer molecules is about 80% that of the copolymer molecule. A detailed examination of the theory demonstrates that the attraction results from the configurational entropy loss of the homopolymer molecules trapped between the copolymermonolayers. We conclude by suggesting how the monolayers can be altered in order to suppress this attraction and thus improve compatiblization.
Resumo:
We performed Monte Carlo simulations to investigate the steady-state critical behavior of a one-dimensional contact process with an aperiodic distribution of rates of transition. As in the presence of randomness, spatial fluctuations can lead to changes of critical behavior. For sufficiently weak fluctuations, we give numerical evidence to show that there is no departure from the universal critical behavior of the underlying uniform model. For strong spatial fluctuations, the analysis of the data indicates a change of critical universality class.
Resumo:
We consider the three-particle scattering S-matrix for the Landau-Lifshitz model by directly computing the set of the Feynman diagrams up to the second order. We show, following the analogous computations for the non-linear Schrdinger model [1, 2], that the three-particle S-matrix is factorizable in the first non-trivial order.
Resumo:
We consider the formal non-relativistic limit (nrl) of the : phi(4):(s+1) relativistic quantum field theory (rqft), where s is the space dimension. Following the work of R. Jackiw [R. Jackiw, in: A. Ali, P. Hood-bhoy (Eds.), Beg Memorial Volume, World Scientific, Singapore, 1991], we show that, for s = 2 and a given value of the ultraviolet cutoff K, there are two ways to perform the nrl: (i) fixing the renormalized mass m(2) equal to the bare mass m(0)(2); (ii) keeping the renormalized mass fixed and different from the bare mass mo. In the (infinite-volume) two-particle sector the scattering amplitude tends to zero as K -> infinity in case (i) and, in case (ii), there is a bound state, indicating that the interaction potential is attractive. As a consequence, stability of matter fails for our boson system. We discuss why both alternatives do not reproduce the low-energy behaviour of the full rqft. The singular nature of the nrl is also nicely illustrated for s = 1 by a rigorous stability/instability result of a different nature. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conservation laws have provided an elegant and efficient tool to evaluate the open string field theory interaction vertex, they have been originally implemented in the case where the string field is expanded in the Virasoro basis. In this work we derive conservation laws in the case where the string field is expanded in the so-called sliver L(0)-basis. As an application of this new set of conservation laws, we compute the open string field action relevant to the tachyon condensation and in order to present not only an illustration but also an additional information, we evaluate the action without imposing a gauge choice.
Resumo:
We construct exact vortex solutions in 3+1 dimensions to a theory which is an extension, due to Gies, of the Skyrme-Faddeev model, and that is believed to describe some aspects of the low energy limit of the pure SU(2) Yang-Mills theory. Despite the efforts in the last decades those are the first exact analytical solutions to be constructed for such type of theory. The exact vortices appear in a very particular sector of the theory characterized by special values of the coupling constants, and by a constraint that leads to an infinite number of conserved charges. The theory is scale invariant in that sector, and the solutions satisfy Bogomolny type equations. The energy of the static vortex is proportional to its topological charge, and waves can travel with the speed of light along them, adding to the energy a term proportional to a U(1) No ether charge they create. We believe such vortices may play a role in the strong coupling regime of the pure SU(2) Yang-Mills theory.
Resumo:
The Bullough-Dodd model is an important two-dimensional integrable field theory which finds applications in physics and geometry. We consider a conformally invariant extension of it, and study its integrability properties using a zero curvature condition based on the twisted Kac-Moody algebra A(2)((2)). The one- and two-soliton solutions as well as the breathers are constructed explicitly. We also consider integrable extensions of the Bullough-Dodd model by the introduction of spinor (matter) fields. The resulting theories are conformally invariant and present local internal symmetries. All the one-soliton solutions, for two examples of those models, are constructed using a hybrid of the dressing and Hirota methods. One model is of particular interest because it presents a confinement mechanism for a given conserved charge inside the solitons. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We construct static soliton solutions with non-zero Hopf topological charges to a theory which is the extended Skyrme-Faddeev model with a further quartic term in derivatives. We use an axially symmetric ansatz based on toroidal coordinates, and solve the resulting two coupled nonlinear partial differential equations in two variables by a successive over-relaxation method. We construct numerical solutions with the Hopf charge up to 4. The solutions present an interesting behavior under the changes of a special combination of the coupling constants of the quartic terms.