880 resultados para Concentrated Thermoelectric Solar Power (CSP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of ‘grid-parity’ and ‘fuel-parity’ concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El present projecte té per principal odjectiu dur a terme el disseny d’ una instal·lació solar fotovoltaica de producció d’ energia elèctrica en règim especial sobre teulada instal·lada en un edifici de caràcter oficial de l’ Escola Politècnica Superior de la UdG amb l’ objectiu de generar energia elèctrica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun is close to a blackbody radiator and so emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in“top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying troposphere where Earth’s climate and weather reside. This contrasts with “bottom-up” effects in which the small total solar irradiance (dominated by the visible and near-IR) variations cause surface temperature changes which drive atmospheric circulations. In addition to these electromagnetic outputs, the Sun modulates energetic particle fluxes incident on the Earth. Solar Energetic Particles (SEP) are emitted by solar flares and from the shock fronts ahead of supersonic (and super-Alfvenic) ejections of material from the solar atmosphere. These SEPs enhance the destruction of polar stratospheric ozone which could be an additional form of top-down climate forcing. Even more energetic are Galactic Cosmic Rays (GCRs). These particles are not generated by the Sun, rather they originate at the shock fronts emanating from violent galactic events such as supernovae explosions; however, the expansion of the solar magnetic field into interplanetary space means that the Sun modulates the number of GCRs reaching Earth. These play a key role in enabling Earth’s global electric (thunderstorm) circuit and it has been proposed that they also modulate the formation of clouds. Both electromagnetic and corpuscular solar effects are known to vary over the solar magnetic cycle which is typically between 10 and 14 yrs in length (with an average close to 11 yrs). The solar magnetic field polarity at any one phase of one of these activity cycles is opposite to that at the same phase of the next cycle and this influences some phenomena, for example GCRs, which therefore show a 22 yr (“Hale”) cycle on average. Other phenomena, such as irradiance modulation, do not depend on the polarity of the magnetic field and so show only the basic 11-yr activity cycle. However, any effects on climate are much more significant for solar drifts over centennial timescales. This chapter discusses and evaluates potential effects on Earth’s climate system of variations in these solar inputs. Because of the great variety of proposed mechanisms, the wide range of timescales studied (from days to millennia) and the many debates (often triggered by the application of inadequate statistical methods), the literature on this subject is vast, complex, divergent and rapidly changing: consequently the number of references cited in this review is very large (yet still only a small fraction of the total).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many photovoltaic inverter designs make use of a buck based switched mode power supply (SMPS) to produce a rectified sinusoidal waveform. This waveform is then unfolded by a low frequency switching structure to produce a fully sinusoidal waveform. The Cuk SMPS could offer advantages over the buck in such applications. Unfortunately the Cuk converter is considered to be difficult to control using classical methods. Correct closed loop design is essential for stable operation of Cuk converters. Due to these stability issues, Cuk converter based designs often require stiff low bandwidth control loops. In order to achieve this stable closed loop performance, traditional designs invariably need large, unreliable electrolytic capacitors. In this paper, an inverter with a sliding mode control approach is presented which enables the designer to make use of the Cuk converters advantages, while ameliorating control difficulties. This control method allows the selection of passive components based predominantly on ripple and reliability specifications while requiring only one state reference signal. This allows much smaller, more reliable non-electrolytic capacitors to be used. A prototype inverter has been constructed and results obtained which demonstrate the design flexibility of the Cuk topology when coupled with sliding mode control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluctuations in the solar wind plasma and magnetic field are well described by the sum of two power law distributions. It has been postulated that these distributions are the result of two independent processes: turbulence, which contributes mainly to the smaller fluctuations, and crossing the boundaries of flux tubes of coronal origin, which dominates the larger variations. In this study we explore the correspondence between changes in the magnetic field with changes in other solar wind properties. Changes in density and temperature may result from either turbulence or coronal structures, whereas changes in composition, such as the alpha-to-proton ratio are unlikely to arise from in-transit effects. Observations spanning the entire ACE dataset are compared with a null hypothesis of no correlation between magnetic field discontinuities and changes in other solar wind parameters. Evidence for coronal structuring is weaker than for in-transit turbulence, with only ∼ 25% of large magnetic field discontinuities associated with a significant change in the alpha-to-proton ratio, compared to ∼ 40% for significant density and temperature changes. However, note that a lack of detectable alpha-to-proton signature is not sufficient to discount a structure as having a solar origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of Pb2+ doping on the structure and thermoelectric properties of BiOCuSe (also known as BiCuSeO or BiCuOSe) is described. With increasing Pb2+ content, the expansion of the unit cell results in a weakening of the bonding between the [Bi2(1-x) Pb2xO2]2(1-x)+ and the [Cu2Se2]2(1-x)- layers. The electrical resistivity and Seebeck coefficient decrease in a systematic way with growing Pb2+ levels. The thermal conductivity rises due to the increase of the electronic contribution with doping. The power factor of materials with a 4-5% Pb2+ content takes values of ca. 8 W cm-1 K-2 over a wide temperature range. ZT at 673 K is enhanced by ca. 50% when compared to values found for other dopants, such as Sr2+ or Mg2+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermoelectric behaviour of the transition-metal disulphides n-type NiCr2S4 and p-type CuCrS2 is investigated. Materials prepared by high-temperature reaction were consolidated using cold-pressing and sintering, hot-pressing (HP) in graphite dies or spark-plasma sintering (SPS) in tungsten carbide dies. The consolidation conditions have a marked influence on the electrical transport properties. In addition to the effect on sample density, altering the consolidation conditions results in changes to the sample composition, including the formation of impurity phases. Maximum room-temperature power factors are 0.18 mW m-1 K-2 and 0.09 mW m-1 K-2 for NiCr2S4 and CuCrS2, respectively. Thermal conductivities of ca. 1.4 and 1.2 W m-1 K-1 lead to figures of merit of 0.024 and 0.023 for NiCr2S4 and CuCrS2, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have extensively analysed the interdependence between cloud optical depth, droplet effective radius, liquid water path (LWP) and geometric thickness for stratiform warm clouds using ground-based observations. In particular, this analysis uses cloud optical depths retrieved from untapped solar background signals that are previously unwanted and need to be removed in most lidar applications. Combining these new optical depth retrievals with radar and microwave observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility in Oklahoma during 2005–2007, we have found that LWP and geometric thickness increase and follow a power-law relationship with cloud optical depth regardless of the presence of drizzle; LWP and geometric thickness in drizzling clouds can be generally 20–40 % and at least 10 % higher than those in non-drizzling clouds, respectively. In contrast, droplet effective radius shows a negative correlation with optical depth in drizzling clouds and a positive correlation in non-drizzling clouds, where, for large optical depths, it asymptotes to 10 μm. This asymptotic behaviour in non-drizzling clouds is found in both the droplet effective radius and optical depth, making it possible to use simple thresholds of optical depth, droplet size, or a combination of these two variables for drizzle delineation. This paper demonstrates a new way to enhance ground-based cloud observations and drizzle delineations using existing lidar networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When the solar wind blows: The northern lights are a sign of the awesome power that the Earth receives from the solar wind. The big puzzle is how

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a straightforward methodology for the fabrication of high-temperature thermoelectric (TE) modules using commercially available solder alloys and metal barriers. This methodology employs standard and accessible facilities that are simple to implement in any laboratory. A TE module formed by nine n-type Yb x Co4Sb12 and p-type Ce x Fe3CoSb12 state-of-the-art skutterudite material couples was fabricated. The physical properties of the synthesized skutterudites were determined, and the module power output, internal resistance, and thermocycling stability were evaluated in air. At a temperature difference of 365 K, the module provides more than 1.5 W cm−3 volume power density. However, thermocycling showed an increase of the internal module resistance and degradation in performance with the number of cycles when the device is operated at a hot-side temperature higher than 573 K. This may be attributed to oxidation of the skutterudite thermoelements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Met Office station data from 1980 to 2012 has been used to characterise the interannual variability of incident solar irradiance across the UK. The same data are used to evaluate four popular historical irradiance products to determine which are most suitable for use by the UK PV industry for site selection and system design. The study confirmed previous findings that interannual variability is typically 3–6% and weighted average probability of a particular percentage deviation from the mean at an average site in the UK was calculated. This weighted average showed that fewer than 2% of site-years could be expected to fall below 90% of the long-term site mean. The historical irradiance products were compared against Met Office station data from the input years of each product. This investigation has found that all products perform well. No products have a strong spatial trend. Meteonorm 7 is most conservative (MBE = −2.5%), CMSAF is most optimistic (MBE = +3.4%) and an average of all four products performs better than any one individual product (MBE = 0.3%)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bornite, Cu5FeS4, is a naturally-occuring mineral with an ultralow thermal conductivity and potential for thermoelectric power generation. We describe here a new, easy and scalable route to synthesise bornite, together with the thermoelectric behaviour of manganese-substituted derivatives, Cu5Fe1-xMnxS4 (0 ≤ x ≤ 0.10). The electrical and thermal transport properties of Cu5Fe1-xMnxS4 (0 ≤ x ≤ 0.10), which are p-type semiconductors, were measured from room temperature to 573 K. The stability of bornite was investigated by thermogravimetric analysis under inert and oxidising atmospheres. Repeated measurements of the electrical transport properties confirm that bornite is stable up to 580 K under an inert atmosphere, while heating to 890 K results in rapid degradation. Ball milling leads to a substantial improvement in the thermoelectric figure of merit of unsusbtituted bornite (ZT = 0.55 at 543 K), when compared to bornite prepared by conventional high-temperature synthesis (ZT < 0.3 at 543 K). Manganese-substituted samples have a ZT comparable to that of unsubstituted bornite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Thesis project is a part of the all-round automation of production of concentrating solar PV/T systems Absolicon X10. ABSOLICON Solar Concentrator AB has been invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate the shape of concentrating parabolic reflectors.On the basis of the requirements of the company administration and needs of real production process the operation conditions for the Laser testing rig were formulated. The basic concept to use laser radiation was defined.At the first step, the complex design of the whole system was made and division on the parts was defined. After the preliminary conducted simulations the function and operation conditions of the all parts were formulated.At the next steps, the detailed design of all the parts was conducted. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Laser-testing rig were assembled and tested. Software part, which controls the Laser-testing rig work, was created on the LabVIEW basis. To tune and test software part the special simulator was designed and assembled.When all parts were assembled in the complete system, the Laser-testing rig was tested, calibrated and tuned.In the workshop of Absolicon AB, the trial measurements were conducted and Laser-testing rig was installed in the production line at the plant in Soleftea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the frame of the project REBUS, "Competitive solar heating systems for residential buildings", which is financed by Nordic Energy Research, a new type of compact solar combisystem with high degree of prefabrication was developed. A hydraulic and control concept was designed with the goal to get highest system efficiency for use with either a condensing natural gas boiler or a pellet boiler. Especially when using the potential of high peak power of modern condensing natural gas boilers, a new operation strategy of a natural gas boiler/solar combisystem can increase the energy savings of a small solar combisystem by about 80% compared to conventional operation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis evaluates different sites for a weather measurement system and a suitable PV- simulation for University of Surabaya (UBAYA) in Indonesia/Java. The weather station is able to monitor all common weather phenomena including solar insolation. It is planned to use the data for scientific and educational purposes in the renewable energy studies. During evaluation and installation it falls into place that official specifications from global meteorological organizations could not be meet for some sensors caused by the conditions of UBAYA campus. After arranging the hardware the weather at the site was monitored for period of time. A comparison with different official sources from ground based and satellite bases measurements showed differences in wind and solar radiation. In some cases the monthly average solar insolation was deviating 42 % for satellite-based measurements. For the ground based it was less than 10 %. The average wind speed has a difference of 33 % compared to a source, which evaluated the wind power in Surabaya. The wind direction shows instabilities towards east compared with data from local weather station at the airport. PSET has the chance to get some investments to investigate photovoltaic on there own roof. With several simulations a suitable roof direction and the yearly and monthly outputs are shown. With a 7.7 kWpeak PV installation with the latest crystalline technology on the market 8.82 MWh/year could be achieved with weather data from 2012. Thin film technology could increase the value up to 9.13 MWh/year. However, the roofs have enough area to install PV. Finally the low price of electricity in Indonesia makes it not worth to feed in the energy into the public grid.