974 resultados para Computing cost
Resumo:
MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics and it can obtain a better solution in a reasonable time. Furthermore, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement which puts a fixed number of mapper/reducer on each machine. The comparison results show that the computation using our mapper/reducer placement is much cheaper than the computation using the conventional placement while still satisfying the computation deadline.
Resumo:
The introduction of safety technologies into complex socio-technical systems requires an integrated and holistic approach to HF and engineering, considering the effects of failures not only within system boundaries, but also at the interfaces with other systems and humans. Level crossing warning devices are examples of such systems where technically safe states within the system boundary can influence road user performance, giving rise to other hazards that degrade safety of the system. Chris will discuss the challenges that have been encountered to date in developing a safety argument in support of low-cost level crossing warning devices. The design and failure modes of level crossing warning devices are known to have a significant influence on road user performance; however, quantifying this effect is one of the ongoing challenges in determining appropriate reliability and availability targets for low-cost level crossing warning devices.
Resumo:
We thank Dr. Burd et al. for taking an interest in our paper [1]. The retrospective cohort study was performed and published for two reasons. Firstly, we wished to compare and contrast the use of Acticoat™ and Silvazine™, and secondly we wished to demonstrate how one's practice can be dramatically altered by a change in dressing used. We found that Acticoat™ was safe and easy to use, caused less trauma to patients, required less frequent dressing changes and enabled treatment to be conducted on an outpatient, rather than an inpatient basis. During the period of Acticoat™ treatment we also saw a dramatic reduction in grafting requirements and also in the need for long-term scar management. Burd et al. correctly state that silver-based dressings are now more widely available, however many burn centres in the world continue to use silver sulphadiazine with daily baths. We therefore feel that a comparison is very relevant and useful. Prospective, randomised clinical trials of a range of silver-based dressings would indeed be useful, and hopefully Dr. Burd and colleagues will take up their own suggestion and perform these studies...
Resumo:
Reconfigurable computing devices can increase the performance of compute intensive algorithms by implementing application specific co-processor architectures. The power cost for this performance gain is often an order of magnitude less than that of modern CPUs and GPUs. Exploiting the potential of reconfigurable devices such as Field-Programmable Gate Arrays (FPGAs) is typically a complex and tedious hardware engineering task. Re- cently the major FPGA vendors (Altera, and Xilinx) have released their own high-level design tools, which have great potential for rapid development of FPGA based custom accelerators. In this paper, we will evaluate Altera’s OpenCL Software Development Kit, and Xilinx’s Vivado High Level Sythesis tool. These tools will be compared for their per- formance, logic utilisation, and ease of development for the test case of a Tri-diagonal linear system solver.
Resumo:
The purpose of this paper is to empirically examine the state of cloud computing adoption in Australia. I specifically focus on the drivers, risks, and benefits of cloud computing from the perspective of IT experts and forensic accountants. I use thematic analysis of interview data to answer the research questions of the study. The findings suggest that cloud computing is increasingly gaining foothold in many sectors due to its advantages such as flexibility and the speed of deployment. However, security remains an issue and therefore its adoption is likely to be selective and phased. Of particular concern are the involvement of third parties and foreign jurisdictions, which in the event of damage may complicate litigation and forensic investigations. This is one of the first empirical studies that reports on cloud computing adoption and experiences in Australia.
Resumo:
This research introduces a general methodology in order to create a Coloured Petri Net (CPN) model of a security protocol. Then standard or user-defined security properties of the created CPN model are identified. After adding an attacker model to the protocol model, the security property is verified using state space method. This approach is applied to analyse a number of trusted computing protocols. The results show the applicability of proposed method to analyse both standard and user-defined properties.
Resumo:
This work presents a demand side response model (DSR) which assists small electricity consumers, through an aggregator, exposed to the market price to proactively mitigate price and peak impact on the electrical system. The proposed model allows consumers to manage air-conditioning when as a function of possible price spikes. The main contribution of this research is to demonstrate how consumers can minimise the total expected cost by optimising air-conditioning to account for occurrences of a price spike in the electricity market. This model investigates how pre-cooling method can be used to minimise energy costs when there is a substantial risk of an electricity price spike. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics during hot days on weekdays in the period 2011 to 2012.
Jacobian-free Newton-Krylov methods with GPU acceleration for computing nonlinear ship wave patterns
Resumo:
The nonlinear problem of steady free-surface flow past a submerged source is considered as a case study for three-dimensional ship wave problems. Of particular interest is the distinctive wedge-shaped wave pattern that forms on the surface of the fluid. By reformulating the governing equations with a standard boundary-integral method, we derive a system of nonlinear algebraic equations that enforce a singular integro-differential equation at each midpoint on a two-dimensional mesh. Our contribution is to solve the system of equations with a Jacobian-free Newton-Krylov method together with a banded preconditioner that is carefully constructed with entries taken from the Jacobian of the linearised problem. Further, we are able to utilise graphics processing unit acceleration to significantly increase the grid refinement and decrease the run-time of our solutions in comparison to schemes that are presently employed in the literature. Our approach provides opportunities to explore the nonlinear features of three-dimensional ship wave patterns, such as the shape of steep waves close to their limiting configuration, in a manner that has been possible in the two-dimensional analogue for some time.
Resumo:
Temporary Traffic Control Plans (TCP’s), which provide construction phasing to maintain traffic during construction operations, are integral component of highway construction project design. Using the initial design, designers develop estimated quantities for the required TCP devices that become the basis for bids submitted by highway contractors. However, actual as-built quantities are often significantly different from the engineer’s original estimate. The total cost of TCP phasing on highway construction projects amounts to 6–10% of the total construction cost. Variations between engineer estimated quantities and final quantities contribute to reduced cost control, increased chances of cost related litigations, and bid rankings and selection. Statistical analyses of over 2000 highway construction projects were performed to determine the sources of variation, which later were used as the basis of development for an automated-hybrid prediction model that uses multiple regressions and heuristic rules to provide accurate TCP quantities and costs. The predictive accuracy of the model developed was demonstrated through several case studies.
Resumo:
Enterprises, both public and private, have rapidly commenced using the benefits of enterprise resource planning (ERP) combined with business analytics and “open data sets” which are often outside the control of the enterprise to gain further efficiencies, build new service operations and increase business activity. In many cases, these business activities are based around relevant software systems hosted in a “cloud computing” environment. “Garbage in, garbage out”, or “GIGO”, is a term long used to describe problems in unqualified dependency on information systems, dating from the 1960s. However, a more pertinent variation arose sometime later, namely “garbage in, gospel out” signifying that with large scale information systems, such as ERP and usage of open datasets in a cloud environment, the ability to verify the authenticity of those data sets used may be almost impossible, resulting in dependence upon questionable results. Illicit data set “impersonation” becomes a reality. At the same time the ability to audit such results may be an important requirement, particularly in the public sector. This paper discusses the need for enhancement of identity, reliability, authenticity and audit services, including naming and addressing services, in this emerging environment and analyses some current technologies that are offered and which may be appropriate. However, severe limitations to addressing these requirements have been identified and the paper proposes further research work in the area.
Resumo:
The concept of cloud computing services is appealing to the small and medium enterprises (SMEs), with the opportunity to acquire modern information technology resources as a utility and avoid costly capital investments in technology resources. However, the adoption of the cloud computing services presents significant challenges to the SMEs. The SMEs need to determine a path to adopting the cloud computing services that would ensure their sustainable presence in the cloud computing environment. Information about approaches to adopting the cloud computing services by the SMEs is fragmented. Through an interpretive design, we suggest that the SMEs need to have a strategic and incremental intent, understand their organizational structure, understand the external factors, consider the human resource capacity, and understand the value expectations from the cloud computing services to forge a successful path to adopting the cloud computing services. These factors would contribute to a model of cloud services for SMEs.
Resumo:
The objective of this research was to develop a model to estimate future freeway pavement construction costs in Henan Province, China. A comprehensive set of factors contributing to the cost of freeway pavement construction were included in the model formulation. These factors comprehensively reflect the characteristics of region and topography and altitude variation, the cost of labour, material, and equipment, and time-related variables such as index numbers of labour prices, material prices and equipment prices. An Artificial Neural Network model using the Back-Propagation learning algorithm was developed to estimate the cost of freeway pavement construction. A total of 88 valid freeway cases were obtained from freeway construction projects let by the Henan Transportation Department during the period 1994−2007. Data from a random selection of 81 freeway cases were used to train the Neural Network model and the remaining data were used to test the performance of the Neural Network model. The tested model was used to predict freeway pavement construction costs in 2010 based on predictions of input values. In addition, this paper provides a suggested correction for the prediction of the value for the future freeway pavement construction costs. Since the change in future freeway pavement construction cost is affected by many factors, the predictions obtained by the proposed method, and therefore the model, will need to be tested once actual data are obtained.
Resumo:
Highway construction works have significant bearings on all aspects of sustainability. With the increasing level of public awareness and government regulatory measures, the construction industry is experiencing a cultural shift to recognise, embrace and pursue sustainability. Stakeholders are now keen to identify sustainable alternatives and the financial implications of including them on a lifecycle basis. They need tools that can aid the evaluation of investment options. To date, however, there have not been many financial assessments on the sustainability aspects of highway projects. This is because the existing life-cycle costing analysis (LCCA) models tend to focus on economic issues alone and are not able to deal with sustainability factors. This paper provides insights into the current practice of life-cycle cost analysis, and the identification and quantification of sustainability-related cost components in highway projects through literature review, questionnaire surveys and semi-structured interviews. The results can serve as a platform for highway project stakeholders to develop practical tools to evaluate highway investment decisions and reach an optimum balance between financial viability and sustainability deliverables.
Resumo:
A Software-as-a-Service or SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. Components in a composite SaaS may need to be scaled – replicated or deleted, to accommodate the user’s load. It may not be necessary to replicate all components of the SaaS, as some components can be shared by other instances. On the other hand, when the load is low, some of the instances may need to be deleted to avoid resource underutilisation. Thus, it is important to determine which components are to be scaled such that the performance of the SaaS is still maintained. Extensive research on the SaaS resource management in Cloud has not yet addressed the challenges of scaling process for composite SaaS. Therefore, a hybrid genetic algorithm is proposed in which it utilises the problem’s knowledge and explores the best combination of scaling plan for the components. Experimental results demonstrate that the proposed algorithm outperforms existing heuristic-based solutions.
Resumo:
Planning techniques for large scale earthworks have been considered in this article. To improve these activities a “block theoretic” approach was developed that provides an integrated solution consisting of an allocation of cuts to fills and a sequence of cuts and fills over time. It considers the constantly changing terrain by computing haulage routes dynamically. Consequently more realistic haulage costs are used in the decision making process. A digraph is utilised to describe the terrain surface which has been partitioned into uniform grids. It reflects the true state of the terrain, and is altered after each cut and fill. A shortest path algorithm is successively applied to calculate the cost of each haul, and these costs are summed over the entire sequence, to provide a total cost of haulage. To solve this integrated optimisation problem a variety of solution techniques were applied, including constructive algorithms, meta-heuristics and parallel programming. The extensive numerical investigations have successfully shown the applicability of our approach to real sized earthwork problems.