886 resultados para Computer networks.
Resumo:
Discrete event-driven simulations of digital communication networks have been used widely. However, it is difficult to use a network simulator to simulate a hybrid system in which some objects are not discrete event-driven but are continuous time-driven. A networked control system (NCS) is such an application, in which physical process dynamics are continuous by nature. We have designed and implemented a hybrid simulation environment which effectively integrates models of continuous-time plant processes and discrete-event communication networks by extending the open source network simulator NS-2. To do this a synchronisation mechanism was developed to connect a continuous plant simulation with a discrete network simulation. Furthermore, for evaluating co-design approaches in an NCS environment, a piggybacking method was adopted to allow the control period to be adjusted during simulations. The effectiveness of the technique is demonstrated through case studies which simulate a networked control scenario in which the communication and control system properties are defined explicitly.
Resumo:
A parentheses-free code is suggested for the description of two-terminal electrical networks for computer analysis.
Resumo:
A computer-aided procedure is described for analyzing the reliability of complicated networks. This procedure breaks down a network into small subnetworks whose reliability can be more readily calculated. The subnetworks which are searched for are those with only two nodes; this allows the original network to be considerably simplified.
Resumo:
A computer-aided procedure is described for analyzing the reliability of complicated networks. This procedure breaks down a network into small subnetworks whose reliability can be more readily calculated. The subnetworks which are searched for are those with only two nodes; this allows the original network to be considerably simplified.
Resumo:
This paper explores the application of semi-qualitative probabilistic networks (SQPNs) that combine numeric and qualitative information to computer vision problems. Our version of SQPN allows qualitative influences and imprecise probability measures using intervals. We describe an Imprecise Dirichlet model for parameter learning and an iterative algorithm for evaluating posterior probabilities, maximum a posteriori and most probable explanations. Experiments on facial expression recognition and image segmentation problems are performed using real data.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within process control applications. Therefore, they constitute the foundation upon which real-time distributed computer-controlled systems can be implemented. P-NET is a fieldbus communication standard, which uses a virtual token-passing medium-access-control mechanism. In this paper pre-run-time schedulability conditions for supporting real-time traffic with P-NET networks are established. Essentially, formulae to evaluate the upper bound of the end-to-end communication delay in P-NET messages are provided. Using this upper bound, a feasibility test is then provided to check the timing requirements for accessing remote process variables. This paper also shows how P-NET network segmentation can significantly reduce the end-to-end communication delays for messages with stringent timing requirements.
Resumo:
This paper deals with the integration of radial basis function (RBF) networks into the industrial software control package Connoisseur. The paper shows the improved modelling capabilities offered by RBF networks within the Connoisseur environment compared to linear modelling techniques such as recursive least squares. The paper also goes on to mention the way this improved modelling capability, obtained through the RBF networks will be utilised within Connoisseur.
Resumo:
This work shows the design, simulation, and analysis of two optical interconnection networks for a Dataflow parallel computer architecture. To verify the optical interconnection network performance on the Dataflow architecture, we have analyzed the load balancing among the processors during the parallel programs executions. The load balancing is a very important parameter because it is directly associated to the dataflow parallelism degree. This article proves that optical interconnection networks designed with simple optical devices can provide efficiently the dataflow requirements of a high performance communication system.
Resumo:
In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.
Resumo:
Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture and to optimise the classification performance. The performance is measured by the accuracy, sensitivity, specificity and the area under the receiver-operating characteristic (ROC) curve. The CAD design and development is based on images from 54 symptomatic and 54 asymptomatic plaques. This study demonstrates the ability of a CAD system based on US image analysis and a hybrid trained NN to identify atheromatous plaques at high risk of stroke.
Resumo:
A technique for systematic peptide variation by a combination of rational and evolutionary approaches is presented. The design scheme consists of five consecutive steps: (i) identification of a “seed peptide” with a desired activity, (ii) generation of variants selected from a physicochemical space around the seed peptide, (iii) synthesis and testing of this biased library, (iv) modeling of a quantitative sequence-activity relationship by an artificial neural network, and (v) de novo design by a computer-based evolutionary search in sequence space using the trained neural network as the fitness function. This strategy was successfully applied to the identification of novel peptides that fully prevent the positive chronotropic effect of anti-β1-adrenoreceptor autoantibodies from the serum of patients with dilated cardiomyopathy. The seed peptide, comprising 10 residues, was derived by epitope mapping from an extracellular loop of human β1-adrenoreceptor. A set of 90 peptides was synthesized and tested to provide training data for neural network development. De novo design revealed peptides with desired activities that do not match the seed peptide sequence. These results demonstrate that computer-based evolutionary searches can generate novel peptides with substantial biological activity.
Resumo:
Thesis-University of Illinois at Urbana-Champaign.
Resumo:
Bibliography: p. 39 (2d group)
Resumo:
System compositional approach to model construction and research of informational processes, which take place in biological hierarchical neural networks, is being discussed. A computer toolbox has been successfully developed for solution of tasks from this scientific sphere. A series of computational experiments investigating the work of this toolbox on olfactory bulb model has been carried out. The well-known psychophysical phenomena have been reproduced in experiments.