960 resultados para Computer engineering|Engineering|Electrical engineering
Resumo:
A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.
Resumo:
This paper presents a computer-vision based marker-free method for gait-impairment detection in Patients with Parkinson's disease (PWP). The system is based upon the idea that a normal human body attains equilibrium during the gait by aligning the body posture with Axis-of-Gravity (AOG) using feet as the base of support. In contrast, PWP appear to be falling forward as they are less-able to align their body with AOG due to rigid muscular tone. A normal gait exhibits periodic stride-cycles with stride-angle around 45o between the legs, whereas PWP walk with shortened stride-angle with high variability between the stride-cycles. In order to analyze Parkinsonian-gait (PG), subjects were videotaped with several gait-cycles. The subject's body was segmented using a color-segmentation method to form a silhouette. The silhouette was skeletonized for motion cues extraction. The motion cues analyzed were stride-cycles (based on the cyclic leg motion of skeleton) and posture lean (based on the angle between leaned torso of skeleton and AOG). Cosine similarity between an imaginary perfect gait pattern and the subject gait patterns produced 100% recognition rate of PG for 4 normal-controls and 3 PWP. Results suggested that the method is a promising tool to be used for PG assessment in home-environment.
Resumo:
During a petroleum well production process, It is common the slmultaneous oil and water production, in proportion that can vary from 0% up to values close to 100% of water. Moreover, the production flows can vary a lot, depending on the charaeteristies of eaeh reservoir. Thus being, the meters used in field for the flow and BSW (water in the oil) measurement must work well in wide bands of operation. For the evaluation of the operation of these meters, in the different operation conditions, a Laboratory will be built in UFRN, that has for objective to evaluate in an automatic way the processes of flow and BSW petroleum measurement, considering different operation conditions. The good acting of these meters is fundamental for the accuracy of the measures of the volumes of production liquid and rude of petroleum. For the measurement of this production, the petroleum companies use meters that should indicate the values with tha largast possible accuracy and to respect a series of conditions and minimum requirements, estabelished by the united Entrance ANP/INMETRO 19106/2000. The laboratory of Evafuation of the Processes of Measurement of Flow and BSW to be built will possess an oil tank basically, a tank of water, besides a mixer, a tank auditor, a tank for separation and a tank of residues for discard of fluids, fundamental for the evaluation of the flow metars and BSW. The whole process will be automated through the use of a Programmable Logicat Controller (CLP) and of a supervisory system.This laboratory besides allowing the evaluation of flow meters and BSW used by petroleum companies, it will make possible the development of researches related to the automation. Besides, it will be a collaborating element to the development of the Computer Engineering and Automation Department, that it will propitiate the evolution of the faculty and discente, qualifying them for a job market in continuous growth. The present work describes the project of automation of the laboratory that will be built at of UFRN. The system will be automated using a Programmable Logical Controller and a supervisory system. The programming of PLC and the screens of the supervisory system were developed in this work
Resumo:
One problem with using component-based software development approach is that once software modules are reused over generations of products, they form legacy structures that can be challenging to understand, making validating these systems difficult. Therefore, tools and methodologies that enable engineers to see interactions of these software modules will enhance their ability to make these software systems more dependable. To address this need, we propose SimSight, a framework to capture dynamic call graphs in Simics, a widely adopted commercial full-system simulator. Simics is a software system that simulates complete computer systems. Thus, it performs nearly identical tasks to a real system but at a much lower speed while providing greater execution observability. We have implemented SimSight to generate dynamic call graphs of statically and dynamically linked functions in x86/Linux environment. A case study illustrates how we can use SimSight to identify sources of software errors. We then evaluate its performance using 12 integer programs from SPEC CPU2006 benchmark suite.
Resumo:
Mashups are becoming increasingly popular as end users are able to easily access, manipulate, and compose data from several web sources. To support end users, communities are forming around mashup development environments that facilitate sharing code and knowledge. We have observed, however, that end user mashups tend to suffer from several deficiencies, such as inoperable components or references to invalid data sources, and that those deficiencies are often propagated through the rampant reuse in these end user communities. In this work, we identify and specify ten code smells indicative of deficiencies we observed in a sample of 8,051 pipe-like web mashups developed by thousands of end users in the popular Yahoo! Pipes environment. We show through an empirical study that end users generally prefer pipes that lack those smells, and then present eleven specialized refactorings that we designed to target and remove the smells. Our refactorings reduce the complexity of pipes, increase their abstraction, update broken sources of data and dated components, and standardize pipes to fit the community development patterns. Our assessment on the sample of mashups shows that smells are present in 81% of the pipes, and that the proposed refactorings can reduce that number to 16%, illustrating the potential of refactoring to support thousands of end users developing pipe-like mashups.
Resumo:
Hundreds of Terabytes of CMS (Compact Muon Solenoid) data are being accumulated for storage day by day at the University of Nebraska-Lincoln, which is one of the eight US CMS Tier-2 sites. Managing this data includes retaining useful CMS data sets and clearing storage space for newly arriving data by deleting less useful data sets. This is an important task that is currently being done manually and it requires a large amount of time. The overall objective of this study was to develop a methodology to help identify the data sets to be deleted when there is a requirement for storage space. CMS data is stored using HDFS (Hadoop Distributed File System). HDFS logs give information regarding file access operations. Hadoop MapReduce was used to feed information in these logs to Support Vector Machines (SVMs), a machine learning algorithm applicable to classification and regression which is used in this Thesis to develop a classifier. Time elapsed in data set classification by this method is dependent on the size of the input HDFS log file since the algorithmic complexities of Hadoop MapReduce algorithms here are O(n). The SVM methodology produces a list of data sets for deletion along with their respective sizes. This methodology was also compared with a heuristic called Retention Cost which was calculated using size of the data set and the time since its last access to help decide how useful a data set is. Accuracies of both were compared by calculating the percentage of data sets predicted for deletion which were accessed at a later instance of time. Our methodology using SVMs proved to be more accurate than using the Retention Cost heuristic. This methodology could be used to solve similar problems involving other large data sets.
Resumo:
Software product line (SPL) engineering offers several advantages in the development of families of software products such as reduced costs, high quality and a short time to market. A software product line is a set of software intensive systems, each of which shares a common core set of functionalities, but also differs from the other products through customization tailored to fit the needs of individual groups of customers. The differences between products within the family are well-understood and organized into a feature model that represents the variability of the SPL. Products can then be built by generating and composing features described in the feature model. Testing of software product lines has become a bottleneck in the SPL development lifecycle, since many of the techniques used in their testing have been borrowed from traditional software testing and do not directly take advantage of the similarities between products. This limits the overall gains that can be achieved in SPL engineering. Recent work proposed by both industry and the research community for improving SPL testing has begun to consider this problem, but there is still a need for better testing techniques that are tailored to SPL development. In this thesis, I make two primary contributions to software product line testing. First I propose a new definition for testability of SPLs that is based on the ability to re-use test cases between products without a loss of fault detection effectiveness. I build on this idea to identify elements of the feature model that contribute positively and/or negatively towards SPL testability. Second, I provide a graph based testing approach called the FIG Basis Path method that selects products and features for testing based on a feature dependency graph. This method should increase our ability to re-use results of test cases across successive products in the family and reduce testing effort. I report the results of a case study involving several non-trivial SPLs and show that for these objects, the FIG Basis Path method is as effective as testing all products, but requires us to test no more than 24% of the products in the SPL.
Resumo:
Observability measures the support of computer systems to accurately capture, analyze, and present (collectively observe) the internal information about the systems. Observability frameworks play important roles for program understanding, troubleshooting, performance diagnosis, and optimizations. However, traditional solutions are either expensive or coarse-grained, consequently compromising their utility in accommodating today’s increasingly complex software systems. New solutions are emerging for VM-based languages due to the full control language VMs have over program executions. Existing such solutions, nonetheless, still lack flexibility, have high overhead, or provide limited context information for developing powerful dynamic analyses. In this thesis, we present a VM-based infrastructure, called marker tracing framework (MTF), to address the deficiencies in the existing solutions for providing better observability for VM-based languages. MTF serves as a solid foundation for implementing fine-grained low-overhead program instrumentation. Specifically, MTF allows analysis clients to: 1) define custom events with rich semantics ; 2) specify precisely the program locations where the events should trigger; and 3) adaptively enable/disable the instrumentation at runtime. In addition, MTF-based analysis clients are more powerful by having access to all information available to the VM. To demonstrate the utility and effectiveness of MTF, we present two analysis clients: 1) dynamic typestate analysis with adaptive online program analysis (AOPA); and 2) selective probabilistic calling context analysis (SPCC). In addition, we evaluate the runtime performance of MTF and the typestate client with the DaCapo benchmarks. The results show that: 1) MTF has acceptable runtime overhead when tracing moderate numbers of marker events; and 2) AOPA is highly effective in reducing the event frequency for the dynamic typestate analysis; and 3) language VMs can be exploited to offer greater observability.
Resumo:
In this paper, we consider the problem of topology design for optical networks. We investigate the problem of selecting switching sites to minimize total cost of the optical network. The cost of an optical network can be expressed as a sum of three main factors: the site cost, the link cost, and the switch cost. To the best of our knowledge, this problem has not been studied in its general form as investigated in this paper. We present a mixed integer quadratic programming (MIQP) formulation of the problem to find the optimal value of the total network cost. We also present an efficient heuristic to approximate the solution in polynomial time. The experimental results show good performance of the heuristic. The value of the total network cost computed by the heuristic varies within 2% to 21% of its optimal value in the experiments with 10 nodes. The total network cost computed by the heuristic for 51% of the experiments with 10 node network topologies varies within 8% of its optimal value. We also discuss the insight gained from our experiments.
Resumo:
[ES] El Trabajo Final de Grado tiene por finalidad ofrecer una solución que ayude a las personas a gestionar sus tareas tanto personales como empresariales de una manera más productiva. Actualmente este tipo de aplicaciones tienen mucho éxito. Se decidió que el desarrollo de esta aplicación fuera con la metodología Getting Things Done (GTD) ya que es una metodología que aumenta la productividad y reduce el estrés laboral. A día de hoy, no hay muchas aplicaciones que utilice esta metodología y las que la utilizan lo hace de una forma muy básica. Junto a esta metodología y guiándonos de la experiencia del tutor se intentó combinar esta metodología con controles de tiempo para mejorar aún más la productividad de las personas que utiliza dicho software. El resultado obtenido de este trabajo final de grado fue la base de una aplicación web para la gestión de tareas. El software creado es totalmente funcional, muy fácil de usar, muy intuitivo, y usa la filosofía Getting Things Done . Básicamente los objetivos principales conseguidos en este proyecto fueron: la gestión de usuarios. La gestión de tareas y proyectos. Aplicación de la metodología GTD. Control del tiempo productivo, e improductivo, interrupciones, temporizadores. La aplicación ha sido realizada como Trabajo Final de Grado en Ingeniería Informática, cumpliendo con todas las fases del desarrollo del software, para obtener un producto funcional que fuera aprobado por el tutor que haría el rol de potencial cliente. En el presente proyecto se ha seguido la metodología RUP, dirigida por casos de uso, iterativa e incremental. Para completar el proceso se ha realizado la elaboración de una lista de características, la especificación de los casos de uso, una fase de análisis, una de diseño, implementación y prueba. Las tecnologías utilizadas han sido, principalmente, Ruby On Rails, HTML5, CSS , AJAX y JAVASCRIPT. El objetivo a largo plazo es que esta solución pueda ser tomada como base de implementación, donde haciendo las mejoras necesarias se pueda poner en el mercado un gran software de gestión de tareas siguiendo la metodología GTD.
Resumo:
Generic object recognition is an important function of the human visual system and everybody finds it highly useful in their everyday life. For an artificial vision system it is a really hard, complex and challenging task because instances of the same object category can generate very different images, depending of different variables such as illumination conditions, the pose of an object, the viewpoint of the camera, partial occlusions, and unrelated background clutter. The purpose of this thesis is to develop a system that is able to classify objects in 2D images based on the context, and identify to which category the object belongs to. Given an image, the system can classify it and decide the correct categorie of the object. Furthermore the objective of this thesis is also to test the performance and the precision of different supervised Machine Learning algorithms in this specific task of object image categorization. Through different experiments the implemented application reveals good categorization performances despite the difficulty of the problem. However this project is open to future improvement; it is possible to implement new algorithms that has not been invented yet or using other techniques to extract features to make the system more reliable. This application can be installed inside an embedded system and after trained (performed outside the system), so it can become able to classify objects in a real-time. The information given from a 3D stereocamera, developed inside the department of Computer Engineering of the University of Bologna, can be used to improve the accuracy of the classification task. The idea is to segment a single object in a scene using the depth given from a stereocamera and in this way make the classification more accurate.
Resumo:
Background: In protein sequence classification, identification of the sequence motifs or n-grams that can precisely discriminate between classes is a more interesting scientific question than the classification itself. A number of classification methods aim at accurate classification but fail to explain which sequence features indeed contribute to the accuracy. We hypothesize that sequences in lower denominations (n-grams) can be used to explore the sequence landscape and to identify class-specific motifs that discriminate between classes during classification. Discriminative n-grams are short peptide sequences that are highly frequent in one class but are either minimally present or absent in other classes. In this study, we present a new substitution-based scoring function for identifying discriminative n-grams that are highly specific to a class. Results: We present a scoring function based on discriminative n-grams that can effectively discriminate between classes. The scoring function, initially, harvests the entire set of 4- to 8-grams from the protein sequences of different classes in the dataset. Similar n-grams of the same size are combined to form new n-grams, where the similarity is defined by positive amino acid substitution scores in the BLOSUM62 matrix. Substitution has resulted in a large increase in the number of discriminatory n-grams harvested. Due to the unbalanced nature of the dataset, the frequencies of the n-grams are normalized using a dampening factor, which gives more weightage to the n-grams that appear in fewer classes and vice-versa. After the n-grams are normalized, the scoring function identifies discriminative 4- to 8-grams for each class that are frequent enough to be above a selection threshold. By mapping these discriminative n-grams back to the protein sequences, we obtained contiguous n-grams that represent short class-specific motifs in protein sequences. Our method fared well compared to an existing motif finding method known as Wordspy. We have validated our enriched set of class-specific motifs against the functionally important motifs obtained from the NLSdb, Prosite and ELM databases. We demonstrate that this method is very generic; thus can be widely applied to detect class-specific motifs in many protein sequence classification tasks. Conclusion: The proposed scoring function and methodology is able to identify class-specific motifs using discriminative n-grams derived from the protein sequences. The implementation of amino acid substitution scores for similarity detection, and the dampening factor to normalize the unbalanced datasets have significant effect on the performance of the scoring function. Our multipronged validation tests demonstrate that this method can detect class-specific motifs from a wide variety of protein sequence classes with a potential application to detecting proteome-specific motifs of different organisms.
Resumo:
Neuromorphic computing has become an emerging field in wide range of applications. Its challenge lies in developing a brain-inspired architecture that can emulate human brain and can work for real time applications. In this report a flexible neural architecture is presented which consists of 128 X 128 SRAM crossbar memory and 128 spiking neurons. For Neuron, digital integrate and fire model is used. All components are designed in 45nm technology node. The core can be configured for certain Neuron parameters, Axon types and synapses states and are fully digitally implemented. Learning for this architecture is done offline. To train this circuit a well-known algorithm Restricted Boltzmann Machine (RBM) is used and linear classifiers are trained at the output of RBM. Finally, circuit was tested for handwritten digit recognition application. Future prospects for this architecture are also discussed.
Resumo:
Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.
Resumo:
Obesity is becoming an epidemic phenomenon in most developed countries. The fundamental cause of obesity and overweight is an energy imbalance between calories consumed and calories expended. It is essential to monitor everyday food intake for obesity prevention and management. Existing dietary assessment methods usually require manually recording and recall of food types and portions. Accuracy of the results largely relies on many uncertain factors such as user's memory, food knowledge, and portion estimations. As a result, the accuracy is often compromised. Accurate and convenient dietary assessment methods are still blank and needed in both population and research societies. In this thesis, an automatic food intake assessment method using cameras, inertial measurement units (IMUs) on smart phones was developed to help people foster a healthy life style. With this method, users use their smart phones before and after a meal to capture images or videos around the meal. The smart phone will recognize food items and calculate the volume of the food consumed and provide the results to users. The technical objective is to explore the feasibility of image based food recognition and image based volume estimation. This thesis comprises five publications that address four specific goals of this work: (1) to develop a prototype system with existing methods to review the literature methods, find their drawbacks and explore the feasibility to develop novel methods; (2) based on the prototype system, to investigate new food classification methods to improve the recognition accuracy to a field application level; (3) to design indexing methods for large-scale image database to facilitate the development of new food image recognition and retrieval algorithms; (4) to develop novel convenient and accurate food volume estimation methods using only smart phones with cameras and IMUs. A prototype system was implemented to review existing methods. Image feature detector and descriptor were developed and a nearest neighbor classifier were implemented to classify food items. A reedit card marker method was introduced for metric scale 3D reconstruction and volume calculation. To increase recognition accuracy, novel multi-view food recognition algorithms were developed to recognize regular shape food items. To further increase the accuracy and make the algorithm applicable to arbitrary food items, new food features, new classifiers were designed. The efficiency of the algorithm was increased by means of developing novel image indexing method in large-scale image database. Finally, the volume calculation was enhanced through reducing the marker and introducing IMUs. Sensor fusion technique to combine measurements from cameras and IMUs were explored to infer the metric scale of the 3D model as well as reduce noises from these sensors.