835 resultados para Computer Learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this online course is to ensure new nursing graduate students know how to use computer technologies required to complete academic and research activities. Powerful computers, high speed internet, digitalized resources and databases are widely available in educational institutes. New renovation and updates are being released at faster pace than ever. All these developments are necessary for a student to utilize computer programs and synthesize large amount of data in a limited time for any given academic research project. [See PDF for complete abstract]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Throughout the United States, there are massive initiatives in place to reform healthcare through the implementation of electronic health records. The goals are to improve patient care through improved access to records, the improvement of business and reimbursement processes, streamlining of clinician workflows for increased efficiency, and reducing the variability in the delivery of patient care. [See PDF for complete abstract]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assumption that social skills are necessary ingredients of collaborative learning is well established but rarely empirically tested. In addition, most theories on collaborative learning focus on social skills only at the personal level, while the social skill configurations within a learning group might be of equal importance. Using the integrative framework, this study investigates which social skills at the personal level and at the group level are predictive of task-related e-mail communication, satisfaction with performance and perceived quality of collaboration. Data collection took place in a technology-enhanced long-term project-based learning setting for pre-service teachers. For data collection, two questionnaires were used, one at the beginning and one at the end of the learning cycle which lasted 3 months. During the project phase, the e-mail communication between group members was captured as well. The investigation of 60 project groups (N = 155 for the questionnaires; group size: two or three students) and 33 groups for the e-mail communication (N = 83) revealed that personal social skills played only a minor role compared to group level configurations of social skills in predicting satisfaction with performance, perceived quality of collaboration and communication behaviour. Members from groups that showed a high and/or homogeneous configuration of specific social skills (e.g., cooperation/compromising, leadership) usually were more satisfied and saw their group as more efficient than members from groups with a low and/or heterogeneous configuration of skills.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Online courses will play a key role in the high-volume Informatics education required to train the personnel that will be necessary to fulfill the health IT needs of the country. Online courses can cause feelings of isolation in students. A common way to address these feelings is to hold synchronous online "chats" for students. Conventional chats, however, can be confusing and impose a high extrinsic cognitive load on their participants that hinders the learning process. In this paper we present a qualitative analysis that shows the causes of this high cognitive load and our solution through the use of a moderated chat system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perceptual learning is a training induced improvement in performance. Mechanisms underlying the perceptual learning of depth discrimination in dynamic random dot stereograms were examined by assessing stereothresholds as a function of decorrelation. The inflection point of the decorrelation function was defined as the level of decorrelation corresponding to 1.4 times the threshold when decorrelation is 0%. In general, stereothresholds increased with increasing decorrelation. Following training, stereothresholds and standard errors of measurement decreased systematically for all tested decorrelation values. Post training decorrelation functions were reduced by a multiplicative constant (approximately 5), exhibiting changes in stereothresholds without changes in the inflection points. Disparity energy model simulations indicate that a post-training reduction in neuronal noise can sufficiently account for the perceptual learning effects. In two subjects, learning effects were retained over a period of six months, which may have application for training stereo deficient subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A change in synaptic strength arising from the activation of two neuronal pathways at approximately the same time is a form of associative plasticity and may underlie classical conditioning. Previously, a cellular analog of a classical conditioning protocol has been demonstrated to produce short-term associative plasticity at the connections between sensory and motor neurons in Aplysia. A similar training protocol produced long-term (24 hour) enhancement of excitatory postsynaptic potentials (EPSPs). EPSPs produced by sensory neurons in which activity was paired with a reinforcing stimulus were significantly larger than unpaired controls 24 hours after training. To examined whether the associative plasticity observed at these synapses may be involved in higher-order forms of classical conditioning, a neural analog of contingency was developed. In addition, computer simulations were used to analyze whether the associative plasticity observed in Aplysia could, in theory, account for second-order conditioning and blocking. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined a new type of cognitive intervention. For four weeks, participants (ages 65 to 82) were instructed in professional acting techniques, followed by rehearsal and performance of theatrical scenes. Although the training was not targeted in any way to the tasks used in pre- and post-testing, participants produced significantly higher recall and recognition scores after the intervention. It is suggested that the cognitive effort involved in analyzing and adopting theatrical characters' motivations (and then experiencing those characters' mental/emotional states during performance) is responsible for the observed improvement. A secondary strand of this study showed that participants who were given annotated scripts in which the implied goals of the characters were made explicit demonstrated significantly faster access to the stored material, as measured by a computer latency task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses an investigation with machine learning (ML) classification techniques to assist in the problem of flash flood now casting. We have been attempting to build a Wireless Sensor Network (WSN) to collect measurements from a river located in an urban area. The machine learning classification methods were investigated with the aim of allowing flash flood now casting, which in turn allows the WSN to give alerts to the local population. We have evaluated several types of ML taking account of the different now casting stages (i.e. Number of future time steps to forecast). We have also evaluated different data representation to be used as input of the ML techniques. The results show that different data representation can lead to results significantly better for different stages of now casting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patient-specific biomechanical models including local bone mineral density and anisotropy have gained importance for assessing musculoskeletal disorders. However the trabecular bone anisotropy captured by high-resolution imaging is only available at the peripheral skeleton in clinical practice. In this work, we propose a supervised learning approach to predict trabecular bone anisotropy that builds on a novel set of pose invariant feature descriptors. The statistical relationship between trabecular bone anisotropy and feature descriptors were learned from a database of pairs of high resolution QCT and clinical QCT reconstructions. On a set of leave-one-out experiments, we compared the accuracy of the proposed approach to previous ones, and report a mean prediction error of 6% for the tensor norm, 6% for the degree of anisotropy and 19◦ for the principal tensor direction. These findings show the potential of the proposed approach to predict trabecular bone anisotropy from clinically available QCT images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a shallow dialogue analysis model, aimed at human-human dialogues in the context of staff or business meetings. Four components of the model are defined, and several machine learning techniques are used to extract features from dialogue transcripts: maximum entropy classifiers for dialogue acts, latent semantic analysis for topic segmentation, or decision tree classifiers for discourse markers. A rule-based approach is proposed for solving cross-modal references to meeting documents. The methods are trained and evaluated thanks to a common data set and annotation format. The integration of the components into an automated shallow dialogue parser opens the way to multimodal meeting processing and retrieval applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution of this article demonstrates how to identify context-aware types of e-Learning objects (eLOs) derived from the subject domains. This perspective is taken from an engineering point of view and is applied during requirements elicitation and analysis relating to present work in constructing an object-oriented (OO), dynamic, and adaptive model to build and deliver packaged e-Learning courses. Consequently, three preliminary subject domains are presented and, as a result, three primitive types of eLOs are posited. These types educed from the subject domains are of structural, conceptual, and granular nature. Structural objects are responsible for the course itself, conceptual objects incorporate adaptive and logical interoperability, while granular objects congregate granular assets. Their differences, interrelationships, and responsibilities are discussed. A major design challenge relates to adaptive behaviour. Future research addresses refinement on the subject domains and adaptive hypermedia systems.