899 resultados para Computacional Intelligence in Medecine
Resumo:
As concessionárias de energia, para garantir que sua rede seja confiável, necessitam realizar um procedimento para estudo e análise baseado em funções de entrega de energia nos pontos de consumo. Este estudo, geralmente chamado de planejamento de sistemas de distribuição de energia elétrica, é essencial para garantir que variações na demanda de energia não afetem o desempenho do sistema, que deverá se manter operando de maneira técnica e economicamente viável. Nestes estudos, geralmente são analisados, demanda, tipologia de curva de carga, fator de carga e outros aspectos das cargas existentes. Considerando então a importância da determinação das tipologias de curvas de cargas para as concessionárias de energia em seu processo de planejamento, a Companhia de Eletricidade do Amapá (CEA) realizou uma campanha de medidas de curvas de carga de transformadores de distribuição para obtenção das tipologias de curvas de carga que caracterizam seus consumidores. Neste trabalho apresentam-se os resultados satisfatórios obtidos a partir da utilização de Mineração de Dados baseada em Inteligência Computacional (Mapas Auto-Organizáveis de Kohonen) para seleção das curvas típicas e determinação das tipologias de curvas de carga de consumidores residenciais e industriais da cidade de Macapá, localizada no estado do Amapá. O mapa auto-organizável de Kohonen é um tipo de Rede Neural Artificial que combina operações de projeção e agrupamento, permitindo a realização de análise exploratória de dados, com o objetivo de produzir descrições sumarizadas de grandes conjuntos de dados.
Identificação e estimação de ruído em redes DSL: uma abordagem baseada em inteligência computacional
Resumo:
Este trabalho propõe a utilização de técnicas de inteligência computacional objetivando identificar e estimar a potencia de ruídos em redes Digital Subscriber Line ou Linhas do Assinante Digital (DSL) em tempo real. Uma metodologia baseada no Knowledge Discovery in Databases ou Descobrimento de Conhecimento em Bases de Dados (KDD) para detecção e estimação de ruídos em tempo real, foi utilizada. KDD é aplicado para selecionar, pré-processar e transformar os dados antes da etapa de aplicação dos algoritmos na etapa de mineração de dados. Para identificação dos ruídos o algoritmo tradicional backpropagation baseado em Redes Neurais Artificiais (RNA) é aplicado objetivando identificar o tipo de ruído em predominância durante a coleta das informações do modem do usuário e da central. Enquanto, para estimação o algoritmo de regressão linear e o algoritmo híbrido composto por Fuzzy e regressão linear foram aplicados para estimar a potência em Watts de ruído crosstalk ou diafonia na rede. Os resultados alcançados demonstram que a utilização de algoritmos de inteligência computacional como a RNA são promissores para identificação de ruídos em redes DSL, e que algoritmos como de regressão linear e Fuzzy com regressão linear (FRL) são promissores para a estimação de ruídos em redes DSL.
Resumo:
A monitorização ambulatorial do eletrocardiograma (ECG) permite seguir as atividades cotidianas do paciente durante períodos de 24 horas (ou ainda maiores) possibilitando o estudo de casos que pudessem ter episódios arrítmicos fatais. Entretanto, o maior desafio tecnológico que este tipo de monitorização enfrenta é a perda de informação pela presença de ruídos e artefatos quando o paciente se move. A análise do intervalo QT de despolarização e repolarização ventricular do eletrocardiograma superficial é uma técnica não invasiva com um grande valor para a diagnose e prognósticos de cardiopatias e neuropatias, assim como para a predição da morte cardíaca súbita. A análise do desvio padrão do intervalo QT proporciona informação sobre a dispersão (temporal ou espacial) da repolarização ventricular, entretanto a influencia do ruído provoca erros na detecção do final da onda T que são apreciáveis devido ao fato dos valores pequenos do desvio padrão do QT tanto para sujeitos patológicos e quanto para os sãos. O objetivo geral desta tese é melhorar os métodos de processamento do sinal de ECG ambulatorial usando inteligência computacional, especificamente os métodos relacionados com a detecção do final da onda T, e os de reconhecimento morfológico de batimentos que invalidam a análise da variabilidade do intervalo QT. É proposto e validado (em termos de exatidão e precisão) um novo método e algoritmo para estimar o final da onda T baseado no calculo de áreas de trapézios, empregando sinais da base de dados QT da Physionet. O desempenho do método proposto foi testado e comparado com um dos métodos mais usados para detectar o final da onda T: o método baseado no limiar na primeira derivada. O método de inteligência computacional sugerido combina a extração de características usando o método de análise de componentes principais não lineares e a rede neural de tipo perceptron multicamada. O método de áreas de trapézios teve um bom desempenho em condições ruidosas e não depende de nenhum limiar empírico, sendo adequado para situações com níveis de elevados de ruído de banda larga. O método de reconhecimento morfológico de batimentos foi avaliado com sinais ambulatoriais com e sem artefatos pertencentes a bases de dados de prestigio internacional, e mostrou um bom desempenho.
Resumo:
Diversas atividades de planejamento e operação em sistemas de energia elétrica dependem do conhecimento antecipado e preciso da demanda de carga elétrica. Por este motivo, concessionárias de geração e distribuição de energia elétrica cada vez mais fazem uso de tecnologias de previsão de carga. Essas previsões podem ter um horizonte de curtíssimo, curto, médio ou longo prazo. Inúmeros métodos estatísticos vêm sendo utilizados para o problema de previsão. Todos estes métodos trabalham bem em condições normais, entretanto deixam a desejar em situações onde ocorrem mudanças inesperadas nos parâmetros do ambiente. Atualmente, técnicas baseadas em Inteligência Computacional vêm sendo apresentadas na literatura com resultados satisfatórios para o problema de previsão de carga. Considerando então a importância da previsão da carga elétrica para os sistemas de energia elétrica, neste trabalho, uma nova abordagem para o problema de previsão de carga via redes neurais Auto-Associativas e algoritmos genéticos é avaliada. Três modelos de previsão baseados em Inteligência Computacional são também apresentados tendo seus desempenhos avaliados e comparados com o sistema proposto. Com os resultados alcançados, pôde-se verificar que o modelo proposto se mostrou satisfatório para o problema de previsão, reforçando assim a aplicabilidade de metodologias de inteligência computacional para o problema de previsão de cargas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The concept of epidemiological intelligence, as a construction of information societies, goes beyond monitoring a list of diseases and the ability to elicit rapid responses. The concept should consider the complexity of the definition of epidemiology in the identification of this object of study without being limited to a set of actions in a single government sector. The activities of epidemiological intelligence include risk assessment, strategies for prevention and protection, subsystems of information, crisis management rooms, geographical analysis, etc. This concept contributes to the understanding of policies in health, in multisectorial and geopolitical dimensions, as regards the organization of services around public health emergencies, primary healthcare, as well as disasters. The activities of epidemiological intelligence should not be restricted to scientific research, but the researchers must beware of threats to public health. Lalonde's model enabled consideration of epidemiological intelligence as a way to restructure policies and share resources by creating communities of intelligence, whose purpose is primarily to deal with public health emergencies and disasters.
Resumo:
Relazione tecnica e funzionale, con rimandi teorici disciplinari, riguardo la realizzazione di un sistema informatico su piattaforma Microsoft per l'organizzazione e la fruizione delle informazioni di Ciclo attivo in un'azienda di servizi di grandi dimensioni.
Resumo:
Psychogenetic research has emphasised the influence of social factors on a child's intellectual development. In her work, Ms. Dumitrascu examines two such factors; family size and order of birth. However, since these formal parameters tend to be unstable, other more informal factors should be taken into consideration. Of these, perhaps the most interesting is the "style" of parental education, which Ms. Dumitrascu regards as an expression of national traditions at the family level. This educational style is culture dependent. Only a comparative, cross-cultural study can reveal the real mechanism through which educational style influences the development of a child's intellect and personality. Ms. Dumitrascu conducted an experimental cross-cultural study aimed at examining the effects of the family environment on a child's intellectual development. Three distinct populations were involved in her investigation, each having quite a distinct status in their geographical area; Romanians, Romanies (Gypsies) from Romania, and Russians from the Republic of Moldova. She presented her research in the form of a series of articles written in English totalling 85 pages, and also on disc. A significant difference was revealed between the intelligence of a child living in a large family, and that of a child with no brothers or sisters. In the case of Romany children, the gap is remarkably large. Ms. Dumitrascu concludes that the simultaneous action of several negative factors (low socio-economic status, large family size, socio-cultural isolation of a population) may delay child development. Subjected to such a precarious environment, Romany children do not seek self-realisation, but rather struggle to survive the hardship. Most of them remain out of civilisation. Unfortunately, adult Romanies seldom express any concern regarding their children's successful social integration. The school as main socialisation tool has no value for most parents. Ms. Dumitrascu argues the need for a major effort aimed at helping Romany's social integration. She hopes this project will be of some help for psychologists, social workers, teachers, and all those who are interested in the integration into society of minority groups.
Resumo:
Is there a psychological basis for teaching and learning in the context of a liberal education, and if so, what might such a psychological basis look like? Traditional teaching and assessment often emphasize remembering facts and, to some extent, analyzing ideas. Such skills are important, but they leave out of the aspects of thinking that are most important not only in liberal education, but in life, in general. In this article, I propose a theory called WICS, which is an acronym for wisdom, intelligence, and creativity, synthesized. The basic idea underlying this theory is that, through liberal education, students need to acquire creative skills and attitudes to generate new ideas about how to adapt flexibly to a rapidly changing world, analytical skills and attitudes to ascertain whether these new ideas are good ones, practical skills and attitudes to implement the new ideas and convince others of their value, and wisdom-based skills and attitudes in order to ensure that the new ideas help to achieve a common good through the infusion of positive ethical values.
Resumo:
The recent liberalization of the German energy market has forced the energy industry to develop and install new information systems to support agents on the energy trading floors in their analytical tasks. Besides classical approaches of building a data warehouse giving insight into the time series to understand market and pricing mechanisms, it is crucial to provide a variety of external data from the web. Weather information as well as political news or market rumors are relevant to give the appropriate interpretation to the variables of a volatile energy market. Starting from a multidimensional data model and a collection of buy and sell transactions a data warehouse is built that gives analytical support to the agents. Following the idea of web farming we harvest the web, match the external information sources after a filtering and evaluation process to the data warehouse objects, and present this qualified information on a user interface where market values are correlated with those external sources over the time axis.
Resumo:
By means of fixed-links modeling, the present study identified different processes of visual short-term memory (VSTM) functioning and investigated how these processes are related to intelligence. We conducted an experiment where the participants were presented with a color change detection task. Task complexity was manipulated through varying the number of presented stimuli (set size). We collected hit rate and reaction time (RT) as indicators for the amount of information retained in VSTM and speed of VSTM scanning, respectively. Due to the impurity of these measures, however, the variability in hit rate and RT was assumed to consist not only of genuine variance due to individual differences in VSTM retention and VSTM scanning but also of other, non-experimental portions of variance. Therefore, we identified two qualitatively different types of components for both hit rate and RT: (1) non-experimental components representing processes that remained constant irrespective of set size and (2) experimental components reflecting processes that increased as a function of set size. For RT, intelligence was negatively associated with the non-experimental components, but was unrelated to the experimental components assumed to represent variability in VSTM scanning speed. This finding indicates that individual differences in basic processing speed, rather than in speed of VSTM scanning, differentiates between high- and low-intelligent individuals. For hit rate, the experimental component constituting individual differences in VSTM retention was positively related to intelligence. The non-experimental components of hit rate, representing variability in basal processes, however, were not associated with intelligence. By decomposing VSTM functioning into non-experimental and experimental components, significant associations with intelligence were revealed that otherwise might have been obscured.