881 resultados para Compressed workweek


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly--lactide (PLLA) is one of the most significant members of a group of polymers regarded as bioabsorbable. Degradation of PLLA proceeds through hydrolysis of the ester bonds in the polymer chains and is influenced significantly by the polymer's molecular weight and crystallinity. To evaluate the effects of processing and sterilisation on these properties, PLLA pellets were either compression moulded or extruded, subjected to annealing at 120°C for 4 h and sterilised by ethylene oxide (EtO) gas. Procedures were used to evaluate the mechanical properties, molecular weight and crystallinity. Upon processing, the crystallinity of the material fell from 61% for the PLLA pellets to 12% and 20% for the compressed and extruded components, respectively. After annealing, crystallinity increased to 43% for the compression-moulded material and 40% for the extruded material. Crystallinity further increased upon EtO sterilisation. A slight decrease in molecular weight was observed for the extruded material through processing, annealing and sterilisation. Young's modulus generally increased with increasing crystallinity, and extension at break and tensile strength decreased. The results from this investigation suggest that PLLA is sensitive to processing and sterilisation, altering properties critical to its degradation rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ate studies(2) and fusion energy research(3,4). Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state(5). These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 10(8) K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves(4), but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately(6-10); however, this 'fast ignitor' approach(7) also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid heating of a compressed fusion fuel by a short-duration laser pulse is a promising route to generating energy by nuclear fusion1, and has been demonstrated on an experimental scale using a novel fast-ignitor geometry2. Here we describe a refinement of this system in which a much more powerful, pulsed petawatt (1015 watts) laser creates a fastheated core plasma that is scalable to fullscale ignition, significantly increasing the number of fusion events while still maintaining high heating efficiency at these substantially higher laser energies. Our findings bring us a step closer to realizing the production of relatively inexpensive, full-scale fast-ignition laser facilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To obtain the surface stress changes due to the adsorption of metal monolayers onto metallic surfaces, a new model derived from thermodynamic considerations is presented. Such a model is based on continuum Monte Carlo simulations with embedded atom method potentials in the canonical ensemble, and it is extended to consider the behavior on different islands adsorbed onto (111) substrate surfaces. Homoepitaxial and heteroepitaxial systems are studied. Pseudomorphic growth is not observed for small metal islands with considerable positive misfit with the substrate. Instead, the islands become compressed upon increase of their size. A simple model is proposed to interpolate between the misfits of atoms in small islands and the pseudomorphic behavior of the monolayer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ba0.5Sr0.5TiO3 (BST) thin-film capacitor structures with various thicknesses, (50-1200 nm) and different strain conditions (on lanthanum strontium cobalt oxide La0.5Sr0.5CoO3 and strontium ruthenate SrRuO3 buffer layers) were made using pulsed laser deposition, and characterized by x-ray diffraction. The out-of-plane lattice parameter was followed as a function of temperature within the 100-300 K temperature interval. The phase sequence (cubic-tetragonal-orthorhombic-rhombohedral) known to exist in the bulk analog is shown to be strongly affected by both the stress conditions imposed by the buffer layer and the thickness of the BST film itself. Thus, no phase transition was found for the in-plane compressed BST films. On the stress-free BST films, on the contrary, more phase transitions were observed. It appeared that the complexity of structural phase transitions increased as the film thickness in this system was reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports an experimental study in which samples of soft kaolin clay (100 mm in diameter and 200 mm in height) were reinforced with vertical columns of sand and tested under triaxial conditions. Samples were reinforced with either a single column of sand of 32 mm diameter or three columns of sand, each of 20 mm diameter. The replacement method was used to form the columns. The columns were installed in the clay to depths of 120 and 200 mm. Tests were also carried out on samples that were not reinforced with sand columns. The samples were compressed under both drained and undrained conditions. It was found that the undrained shear strength of samples containing full-depth columns was greatly improved compared with that of the unreinforced samples. In the fully drained tests, the sample installed with a single column of 32 mm diameter exhibited better performance than the sample with three columns of 20 mm diameter, although the area replacement ratio in the case of the three 20 mm diameter columns was higher than that of the single 32 mm diameter column. However, the undrained strength of the composite material was not particularly affected by the number of columns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this highly novel study was to use hot-melt extrusion technology as an alternative process to enteric coating. In so doing, oral dosage forms displaying enteric properties may be produced in a continuous, rapid process, providing significant advantages over traditional pharmaceutical coating technology. Eudragit (R) L100-55, an enteric polymer, was pre-plasticized with triethyl citrate (TEC) and citric acid and subsequently dry-mixed with 5-aminosalicylic acid, a model active pharmaceutical ingredient (API), and an optional gelling agent (PVP (R) K30 or Carbopol (R) 971P). Powder blends were hot-melt extruded as cylinders, cut into tablets and characterised using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dissolution testing conducted in both pH 1.2 and pH 6.8 buffers. Increasing the concentration of TEC significantly lowered the glass transition temperature (T,) of Eudragit (R) L100-55 and reduced temperatures necessary for extrusion as well as the die pressure. Moreover, citric acid (17% w/w) was shown to act as a solid-state plasticizer. HME tablets showed excellent gastro-resistance, whereas milled extrudates compressed into tablets released more than 10% w/w of the API in acidic media. Drug release from HME tablets was dependent upon the concentration of TEC, the presence of citric acid, PVP K30, and Carbopol (R) 971P in the matrix, and pH of the dissolution media. The inclusion of an optional gelling agent significantly reduced the erosion of the matrix and drug release rate at pH 6.8; however, the enteric properties of the matrix were lost due to the formation of channels within the tablet. Consequently this work is both timely and highly innovative and identifies for the first time a method of producing an enteric matrix tablet using a continuous hot-melt extrusion process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars, Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last 40 years considerable progress has been made in understanding the complex behaviour of unsaturated soils. Research using constitutive modelling has extended the critical state framework and the concept of yielding in saturated soils to encompass unsaturated soils experiencing suction. However, validation testing of the framework for unsaturated soils has shown disagreement with the basic propositions. The main reason for this disparity is the anisotropic properties of the soil specimens tested as a result of preparation using one-dimensional compaction. The paper describes the detailed testing carried out to justify this statement. As part of the work presented, samples of unsaturated kaolin were prepared using isotropic compression. The suctions in these samples were reduced to predefined values by wetting under low isotropic loading. The pore size distributions, the pressure–volume relationships and yielding under subsequent isotropic loading are compared with tests on samples prepared by statically compressing kaolin into a one-dimensional compaction mould. The anisotropically compressed samples had initial water contents and specific volumes similar to those of the isotropically prepared samples and were also tested under reducing suctions; they exhibited distinctly different behaviour when tested under similar conditions. The results obtained from the isotropically prepared and tested samples have shown, probably for the first time, the existence of a unique normal compression surface that is not dependent on the initial conditions of the samples. The shape of the loading–collapse (LC) yield locus is shown to be different from the generally accepted form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)(2)(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas: substrate ratio. However, a factor-dependent interaction between the syngas: substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N-2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)(-1)) of 500 h(-1) at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear: branched (1:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new vaginal ring technology, the insert vaginal ring (InVR), is presented. The InVR overcomes the current shortfall of conventional vaginal rings (VRs) that are generally ineffectual for the delivery of hydrophilic and/or macromolecular actives, including peptides, proteins and antibodies, due to their poor permeation characteristics in the hydrophobic polymeric elastomers from which VRs are usually fabricated. Release of the model protein BSA from a variety of insert matrices for the InVR is demonstrated, including modified silicone rods, directly compressed tablets and lyophilised gels, which collectively provided controlled release profiles from several hours to beyond 4 weeks. Furthermore, the InVR was shown to deliver over 1 mg of the monoclonal antibody 2F5 from a single device, offering a potential means of protecting women against the transmission of HIV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of approximate to 1.35 attosecond and a spatial size of approximate to 1.08 10(-3) cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of approximate to 0.6 attosecond and a spatial size of approximate to 2.4 10(-3) cm. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an urgent global need for preventative strategies against HIV-1 infections. Llama heavy-chain antibody fragments (VHH) are a class of molecules recently described as potent cross-clade HIV-1 entry inhibitors. We studied the potential of a VHH-based microbicide in an application-oriented fashion. We show that VHH can be inexpensively produced in high amounts in the GRAS organism S. cerevisiae, resulting in very pure, and endotoxin free product. VHH are very stable under conditions they might encounter during transport, storage or use by women. We developed active formulations of VHH in aqueous gel and compressed and lyophilized tablets for controlled release from an intra vaginal device. The release profile of the VHH from e.g. a vaginal ring suggests sufficient bioavailability and protective concentration of the molecule at the mucosal site at the moment of the infection. The ex vivo penetration kinetics through human tissues show that the VHH diffuse into the mucosal layer and open the possibility to create a second defense layer either by blocking the HIV receptor binding sites or by blocking the receptors of immune cells in the mucosa. In conclusion, our data show that VHH have