990 resultados para Compound Poisson Process
Resumo:
As a function of temperature, the layered compound K2Na[Ag(CN)213 displays dramatic variations in luminescence thermochromism with major trend changes occurring around 80 K. In order to understand these interesting optical properties, high-resolution neutron diffraction investigations were performed on a polycrystalline sample of this material in the temperature range from 1.5 to 300 K, and previous synchrotron X-ray data of Larochelle et al. (Solid State Commun. 114, 155 (2000)) were reinterpreted. The corresponding significant structural changes were found to be continuous with an anomalous increase of the monoclinic c-lattice parameter with decreasing temperature, associated with slight reorientations of two inequivalent, approximately linear N-C-Ag-C-N units. In the whole temperature range, the crystal structure is monoclinic with the space group C2/m. Based on the structural results, the major luminescence thermochromism changes around 80 K are attributed to the dominance of a back energy transfer process from low- to high-energy excitons at high temperatures. (E) 2002 Elsevier Science (USA).
Resumo:
The biological reactions during the settling and decant periods of Sequencing Batch Reactors (SBRs) are generally ignored as they are not easily measured or described by modelling approaches. However, important processes are taking place, and in particular when the influent is fed into the bottom of the reactor at the same time (one of the main features of the UniFed process), the inclusion of these stages is crucial for accurate process predictions. Due to the vertical stratification of both liquid and solid components, a one-dimensional hydraulic model is combined with a modified ASM2d biological model to allow the prediction of settling velocity, sludge concentration, soluble components and biological processes during the non-mixed periods of the SBR. The model is calibrated on a full-scale UniFed SBR system with tracer breakthrough tests, depth profiles of particulate and soluble compounds and measurements of the key components during the mixed aerobic period. This model is then validated against results from an independent experimental period with considerably different operating parameters. In both cases, the model is able to accurately predict the stratification and most of the biological reactions occurring in the sludge blanket and the supernatant during the non-mixed periods. Together with a correct description of the mixed aerobic period, a good prediction of the overall SBR performance can be achieved.
Resumo:
Accurate habitat mapping is critical to landscape ecological studies such as required for developing and testing Montreal Process indicator 1.1e, fragmentation of forest types. This task poses a major challenge to remote sensing, especially in mixedspecies, variable-age forests such as dry eucalypt forests of subtropical eastern Australia. In this paper, we apply an innovative approach that uses a small section of one-metre resolution airborne data to calibrate a moderate spatial resolution model (30 m resolution; scale 1:50 000) based on Landsat Thematic Mapper data to estimate canopy structural properties in St Marys State Forest, near Maryborough, south-eastern Queensland. The approach applies an image-processing model that assumes each image pixel is significantly larger than individual tree crowns and gaps to estimate crown-cover percentage, stem density and mean crown diameter. These parameters were classified into three discrete habitat classes to match the ecology of four exudivorous arboreal species (yellowbellied glider Petaurus australis, sugar glider P. breviceps, squirrel glider P. norfolcensis , and feathertail glider Acrobates pygmaeus), and one folivorous arboreal marsupial, the greater glider Petauroides volans. These species were targeted due to the known ecological preference for old trees with hollows, and differences in their home range requirements. The overall mapping accuracy, visually assessed against transects (n = 93) interpreted from a digital orthophoto and validated in the field, was 79% (KHAT statistic = 0.72). The KHAT statistic serves as an indicator of the extent that the percentage correct values of the error matrix are due to ‘true’ agreement verses ‘chance’ agreement. This means that we are able to reliably report on the effect of habitat loss on target species, especially those with a large home range size (e.g. yellow-bellied glider). However, the classified habitat map failed to accurately capture the spatial patterning (e.g. patch size and shape) of stands with a trace or sub-dominance of senescent trees. This outcome makes the reporting of the effects of habitat fragmentation more problematic, especially for species with a small home range size (e.g. feathertail glider). With further model refinement and validation, however, this moderateresolution approach offers an important, cost eff e c t i v e advancement in mapping the age of dry eucalypt forests in the region.
Resumo:
Phase relations and the liquidus surface in the system "MnO"-Al2O3-SiO2 at manganese-rich alloy saturation have been investigated in the temperature range from 1373 to 1773 K. This system contains the primary-phase fields of tridymite and cristobalite (SiO2); mullite (3Al(2)O(3).2SiO(2)); corundum (Al2O3); galaxite (MnO.Al2O3); manganosite (MnO); tephroite (2MnO.SiO2); rhodonite (MnO.SiO2); spessartine (3MnO.Al2O3.SiO2); and the compound MnO.Al2O3.2SiO(2).
Resumo:
Adsorption of four dissociating aromatic compounds and one nondissociating compound on a commercial activated carbon is investigated systematically. All adsorption experiments were carried out in pH-controlled aqueous solutions. The adsorption isotherms are fitted to the binary homogeneous Langmuir model, where the concentrations of the molecular and the ionic species in the liquid phase are expressed in terms of the sum of the two and the degree of solute ionization. Examination of the relationships between the solution pH, the degree of ionization of the solutes, and the model parameters is found to give new insights into the adsorption process. Furthermore, this is used to correlate the variation of the monolayer capacity with the solution pH.
Resumo:
In Australian universities the discipline of Geography has been the pace-setter in forging cross-disciplinary links to create multidisciplinary departments and schools, well ahead of other disciplines in humanities, social sciences and sciences, and also to a greater extent than in comparable overseas university systems. Details on all cross-disciplinary links and on immediate outcomes have been obtained by surveys of all heads of departments/schools with undergraduate Geography programs. These programs have traced their own distinctive trajectories, with ramifying links to cognate fields of enquiry, achieved through mergers, transfers, internal initiatives and, more recently, faculty-wide restructuring to create supradisciplinary schools. Geography's `exceptionalism' has proved short-lived. Disciplinary flux is now extending more widely within Australian universities, driven by a variety of internal and external forces, including: intellectual questioning and new ways of constituting knowledge; technological change and the information revolution; the growth of instrumentalism and credentialism, and managerialism and entre-preneurial imperatives; reinforced by a powerful budgetary squeeze. Geographers are proving highly adaptive in pursuit of cross-disciplinary connections, offering analytical tools and selected disciplinary insights useful to non-geographers. However, this may be at cost to undergraduate programs focussing on Geography's intellectual core. Whereas formerly Geography had high reproductive capacity but low instrumental value it may now be in a phase of enhanced utility but perilously low reproductive capacity.
Resumo:
Adsorption of one nondissociating and four dissociating aromatic compounds onto three untreated activated carbons from dilute aqueous solutions were investigated. All adsorption experiments were preformed in pH-controlled solutions. The experimental isotherms were analyzed using the homogeneous Langmuir model. The surface chemical properties of the activated carbons were characterized using a combination of water adsorption, X-ray photoemission spectroscopy, and mass titration. These data give rise to a new insight into the adsorption mechanism of aromatic solutes, in their molecular and ionic forms, onto untreated activated carbons. It was found that, for the hydrophilic activated carbons, the dominant adsorption forces were observed to be dipolar interactions when the solutes were in their molecular form whereas dispersive forces, such as pi-pi interactions, were most likely dominant in the case of the basic hydrophobic carbons. However, when the solutes were in their ionic form adsorption occurs in all cases through dispersive forces.
Resumo:
A technique based on laser light diffraction is shown to be successful in collecting on-line experimental data. Time series of floc size distributions (FSD) under different shear rates (G) and calcium additions were collected. The steady state mass mean diameter decreased with increasing shear rate G and increased when calcium additions exceeded 8 mg/l. A so-called population balance model (PBM) was used to describe the experimental data, This kind of model describes both aggregation and breakage through birth and death terms. A discretised PBM was used since analytical solutions of the integro-partial differential equations are non-existing. Despite the complexity of the model, only 2 parameters need to be estimated: the aggregation rate and the breakage rate. The model seems, however, to lack flexibility. Also, the description of the floc size distribution (FSD) in time is not accurate.