891 resultados para Complex Disease
Impact of beta-galactosidase mutations on the expression of the canine lysosomal multienzyme complex
Resumo:
beta-galactosidase (GLB1) forms a functional lysosomal multienzyme complex with lysosomal protective protein (PPCA) and neuraminidase 1 (NEU1) which is important for its intracellular processing and activity. Mutations in the beta-galactosidase gene cause the lysosomal storage disease G(M1)-gangliosidosis. In order to identify additional molecular changes associated with the presence of beta-galactosidase mutations, the expression of canine lysosomal multienzyme complex components in GLB1(+/+), GLB1(+/-) and GLB1(-/-) fibroblasts was investigated by quantitative RT-PCR, Western blot and enzymatic assays. Quantitative RT-PCR revealed differential regulation of total beta-galactosidase, beta-galactosidase variants and protective protein for beta-galactosidase gene (PPGB) in GLB1(+/-) and GLB1(-/-) compared to GLB1(+/+) fibroblasts. Furthermore, it was shown that PPGB levels gradually increased with the number of mutant beta-galactosidase alleles while no change in the NEU1 expression was observed. This is the first study that simultaneously examine the effect of GLB1(+/+), GLB1(+/-) and GLB1(-/-) genotypes on the expression of lysosomal multienzyme complex components. The findings reveal a possible adaptive process in GLB1 homozygous mutant and heterozygous individuals that could facilitate the design of efficient therapeutic strategies.
Resumo:
Lung function measures are heritable, predict mortality and are relevant in diagnosis of chronic obstructive pulmonary disease (COPD). COPD and asthma are diseases of the airways with major public health impacts and each have a heritable component. Genome-wide association studies of SNPs have revealed novel genetic associations with both diseases but only account for a small proportion of the heritability. Complex copy number variation may account for some of the missing heritability. A well-characterised genomic region of complex copy number variation contains beta-defensin genes (DEFB103, DEFB104 and DEFB4), which have a role in the innate immune response. Previous studies have implicated these and related genes as being associated with asthma or COPD. We hypothesised that copy number variation of these genes may play a role in lung function in the general population and in COPD and asthma risk. We undertook copy number typing of this locus in 1149 adult and 689 children using a paralogue ratio test and investigated association with COPD, asthma and lung function. Replication of findings was assessed in a larger independent sample of COPD cases and smoking controls. We found evidence for an association of beta-defensin copy number with COPD in the adult cohort (OR = 1.4, 95%CI:1.02-1.92, P = 0.039) but this finding, and findings from a previous study, were not replicated in a larger follow-up sample(OR = 0.89, 95%CI:0.72-1.07, P = 0.217). No robust evidence of association with asthma in children was observed. We found no evidence for association between beta-defensin copy number and lung function in the general populations. Our findings suggest that previous reports of association of beta-defensin copy number with COPD should be viewed with caution. Suboptimal measurement of copy number can lead to spurious associations. Further beta-defensin copy number measurement in larger sample sizes of COPD cases and children with asthma are needed.
Resumo:
Background Visual symptoms are common in Parkinson's disease (PD) and are frequently under-diagnosed. The detection of visual symptoms is important for differential diagnosis and patient management. Aim To establish the prevalence of recurrent visual complaints (RVC) and recurrent visual hallucinations (RVH) and to investigate their interaction in PD patients and controls. Methods This cross-sectional study included 88 PD patients and 90 controls. RVC and RVH were assessed with a visual symptom questionnaire and the North-East-Visual-Hallucinations-Interview (NEVHI). Results Double vision (PD vs. Controls: 18.2% vs. 1.3%; p < 0.001), misjudging objects when walking (PD vs. Controls: 12.5% vs. 1.3%; p < 0.01), words moving whilst reading (PD vs. Controls: 17.0% vs. 1.3%; p < 0.001) and freezing in narrow spaces (PD vs. Controls: 30.7% vs. 0%; p < 0.001) were almost exclusively found in PD patients. The same was true for recurrent complex visual hallucinations and illusions (PD vs. Controls: both 17.0% vs. 0%; p < 0.001). Multiple RVC (43.2% vs. 15.8%) and multiple RVH (29.5% vs. 5.6%) were also more common in PD patients (both p < 0.001). RVC did not predict recurrent complex visual hallucinations; but double vision (p = 0.018, R2 = 0.302) and misjudging objects (p = 0.002, R2 = 0.302) predicted passage hallucinations. Misjudging objects also predicted the feeling of presence (p = 0.010, R2 = 0.321). Conclusions Multiple and recurrent visual symptoms are common in PD. RVC emerged as risk factors predictive of the minor forms of hallucinations, but not recurrent complex visual hallucinations.
Resumo:
Parkinson's disease, typically thought of as a movement disorder, is increasingly recognized as causing cognitive impairment and dementia. Eye movement abnormalities are also described, including impairment of rapid eye movements (saccades) and the fixations interspersed between them. Such movements are under the influence of cortical and subcortical networks commonly targeted by the neurodegeneration seen in Parkinson's disease and, as such, may provide a marker for cognitive decline. This study examined the error rates and visual exploration strategies of subjects with Parkinson's disease, with and without cognitive impairment, whilst performing a battery of visuo-cognitive tasks. Error rates were significantly higher in those Parkinson's disease groups with either mild cognitive impairment (P = 0.001) or dementia (P < 0.001), than in cognitively normal subjects with Parkinson's disease. When compared with cognitively normal subjects with Parkinson's disease, exploration strategy, as measured by a number of eye tracking variables, was least efficient in the dementia group but was also affected in those subjects with Parkinson's disease with mild cognitive impairment. When compared with control subjects and cognitively normal subjects with Parkinson's disease, saccade amplitudes were significantly reduced in the groups with mild cognitive impairment or dementia. Fixation duration was longer in all Parkinson's disease groups compared with healthy control subjects but was longest for cognitively impaired Parkinson's disease groups. The strongest predictor of average fixation duration was disease severity. Analysing only data from the most complex task, with the highest error rates, both cognitive impairment and disease severity contributed to a predictive model for fixation duration [F(2,76) = 12.52, P ≤ 0.001], but medication dose did not (r = 0.18, n = 78, P = 0.098, not significant). This study highlights the potential use of exploration strategy measures as a marker of cognitive decline in Parkinson's disease and reveals the efficiency by which fixations and saccades are deployed in the build-up to a cognitive response, rather than merely focusing on the outcome itself. The prolongation of fixation duration, present to a small but significant degree even in cognitively normal subjects with Parkinson's disease, suggests a disease-specific impact on the networks directing visual exploration, although the study also highlights the multi-factorial nature of changes in exploration and the significant impact of cognitive decline on efficiency of visual search.
Characteristics of visual hallucinations in Parkinson disease dementia and dementia with Lewy bodies
Resumo:
OBJECTIVE Parkinson disease dementia (PDD) and dementia with Lewy bodies (DLB) have overlapping clinical and pathologic features. Recurrent visual hallucinations (RVH) are common in both disorders. The authors have compared details of hallucination characteristics and associated neuropsychiatric features in DLB and PDD. METHODS This is a descriptive, cross-sectional study using the Institute of Psychiatry Visual Hallucinations Interview (IP-VHI) to explore self-reported frequency, duration, and phenomenology of RVH in PDD and DLB. The caregivers' ratings of hallucinations and other neuropsychiatric features were elicited with the Neuropsychiatric Inventory (NPI). RESULTS Fifty-six patients (35 PDD; 21 DLB) with RVH were assessed. Hallucination characteristics were similar in both disorders. Simple hallucinations were rare. Most patients experienced complex hallucinations daily, normally lasting minutes. They commonly saw people or animals and the experiences were usually perceived as unpleasant. NPI anxiety scores were higher in PDD. Neuropsychiatric symptoms coexisting with hallucinations were apathy, sleep disturbance, and anxiety. CONCLUSIONS Patients with mild to moderate dementia can provide detailed information about their hallucinations. Characteristics of RVH were similar in PDD and DLB, and phenomenology suggests the involvement of dorsal and ventral visual pathways in their generation. The coexistence of RVH with anxiety, apathy, and sleep disturbance is likely to impair patients' quality of life and may have treatment implications.
Resumo:
Neurodegeneration in Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) affect cortical and subcortical networks involved in saccade generation. We therefore expected impairments in saccade performance in both disorders. In order to improve the pathophysiological understanding and to investigate the usefulness of saccades for differential diagnosis, saccades were tested in age- and education-matched patients with PDD (n = 20) and DLB (n = 20), Alzheimer's disease (n = 22) and Parkinson's disease (n = 24), and controls (n = 24). Reflexive (gap, overlap) and complex saccades (prediction, decision and antisaccade) were tested with electro-oculography. PDD and DLB patients had similar impairment in all tasks (P > 0.05, not significant). Compared with controls, they were impaired in both reflexive saccade execution (gap and overlap latencies, P < 0.0001; gains, P < 0.004) and complex saccade performance (target prediction, P < 0.0001; error decisions, P < 0.003; error antisaccades: P < 0.0001). Patients with Alzheimer's disease were only impaired in complex saccade performance (Alzheimer's disease versus controls, target prediction P < 0.001, error decisions P < 0.0001, error antisaccades P < 0.0001), but not reflexive saccade execution (for all, P > 0.05). Patients with Parkinson's disease had, compared with controls, similar complex saccade performance (for all, P > 0.05) and only minimal impairment in reflexive tasks, i.e. hypometric gain in the gap task (P = 0.04). Impaired saccade execution in reflexive tasks allowed discrimination between DLB versus Alzheimer's disease (sensitivity > or =60%, specificity > or =77%) and between PDD versus Parkinson's disease (sensitivity > or =60%, specificity > or =88%) when +/-1.5 standard deviations was used for group discrimination. We conclude that impairments in reflexive saccades may be helpful for differential diagnosis and are minimal when either cortical (Alzheimer's disease) or nigrostriatal neurodegeneration (Parkinson's disease) exists solely; however, they become prominent with combined cortical and subcortical neurodegeneration in PDD and DLB. The similarities in saccade performance in PDD and DLB underline the overlap between these conditions and underscore differences from Alzheimer's disease and Parkinson's disease.
Resumo:
Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of insects. IBH is a multifactorial disease with contribution of genetic and environmental factors. Candidate gene association analysis of IBH was performed in a group of 89 Icelandic horses all born in Iceland and imported to Europe. Horses were classified in IBH-affected and non-affected based on clinical signs and history of recurrent dermatitis, and on the results of an in vitro sulfidoleukotriene (sLT)-release assay with Culicoides nubeculosus and Simulium vittatum extract. Different genetic markers were tested for association with IBH by the Fisher's exact test. The effect of the major histocompatibility complex (MHC) gene region was studied by genotyping five microsatellites spanning the MHC region (COR112, COR113, COR114, UM011 and UMN-JH34-2), and exon 2 polymorphisms of the class II Eqca-DRA gene. Associations with Eqca-DRA and COR113 were identified (p < 0.05). In addition, a panel of 20 single nucleotide polymorphisms (SNPs) in 17 candidate allergy-related genes was tested. During the initial screen, no marker from the panel was significantly (p < 0.05) associated with IBH. Five SNPs associated with IBH at p < 0.10 were therefore used for analysis of combined genotypes. Out of them, SNPs located in the genes coding for the CD14 receptor (CD14), interleukin 23 receptor (IL23R), thymic stromal lymphopoietin (TSLP) and transforming growth factor beta 3 (TGFB3) molecules were associated with IBH as parts of complex genotypes. These results are supported by similar associations and by expression data from different horse populations and from human studies.
Mutations in the cofilin partner Aip1/Wdr1 cause autoinflammatory disease and macrothrombocytopenia.
Resumo:
A pivotal mediator of actin dynamics is the protein cofilin, which promotes filament severing and depolymerization, facilitating the breakdown of existing filaments, and the enhancement of filament growth from newly created barbed ends. It does so in concert with actin interacting protein 1 (Aip1), which serves to accelerate cofilin's activity. While progress has been made in understanding its biochemical functions, the physiologic processes the cofilin/Aip1 complex regulates, particularly in higher organisms, are yet to be determined. We have generated an allelic series for WD40 repeat protein 1 (Wdr1), the mammalian homolog of Aip1, and report that reductions in Wdr1 function produce a dramatic phenotype gradient. While severe loss of function at the Wdr1 locus causes embryonic lethality, macrothrombocytopenia and autoinflammatory disease develop in mice carrying hypomorphic alleles. Macrothrombocytopenia is the result of megakaryocyte maturation defects, which lead to a failure of normal platelet shedding. Autoinflammatory disease, which is bone marrow-derived yet nonlymphoid in origin, is characterized by a massive infiltration of neutrophils into inflammatory lesions. Cytoskeletal responses are impaired in Wdr1 mutant neutrophils. These studies establish an essential requirement for Wdr1 in megakaryocytes and neutrophils, indicating that cofilin-mediated actin dynamics are critically important to the development and function of both cell types.
Resumo:
Tuberous sclerosis complex (TSC) is a multisystem, autosomal dominant disorder affecting approximately 1 in 6000 births. Developmental brain abnormalities cause substantial morbidity and mortality and often lead to neurological disease including epilepsy, cognitive disabilities, and autism. TSC is caused by inactivating mutations in either TSC1 or TSC2, whose protein products are known inhibitors of mTORC1, an important kinase regulating translation and cell growth. Nonetheless, neither the pathophysiology of the neurological manifestations of TSC nor the extent of mTORC1 involvement in the development of these lesions is known. Murine models would greatly advance the study of this debilitating disorder. This thesis will describe the generation and characterization of a novel brain-specific mouse model of TSC, Tsc2flox/ko;hGFAP-Cre. In this model, the Tsc2 gene has been removed from most neurons and glia of the cortex and hippocampus by targeted Cre-mediated deletion in radial glial neuroprogenitor cells. The Tsc2flox/ko;hGFAP-Cre mice fail to thrive beginning postnatal day 8 and die from seizures around 23 days. Further characterization of these mice demonstrated megalencephaly, enlarged neurons, abnormal neuronal migration, altered progenitor pools, hypomyelination, and an astrogliosis. The similarity of these defects to those of TSC patients establishes this mouse as an excellent model for the study of the neuropathology of TSC and testing novel therapies. We further describe the use of this mouse model to assess the therapeutic potential of the macrolide rapamycin, an inhibitor of mTORC1. We demonstrate that rapamycin administered from postnatal day 10 can extend the life of the mutant animals 5 fold. Since TSC is a neurodevelopmental disorder, we also assessed in utero and/or immediate postnatal treatment of the animals with rapamycin. Amazingly, combined in utero and postnatal rapamycin effected a histologic rescue that was almost indistinguishable from control animals, indicating that dysregulation of mTORC1 plays a large role in TSC neuropathology. In spite of the almost complete histologic rescue, behavioral studies demonstrated that combined treatment resulted in poorer learning and memory than postnatal treatment alone. Postnatally-treated animals behaved similarly to treated controls, suggesting that immediate human treatment in the newborn period might provide the most opportune developmental timepoint for rapamycin administration.
Resumo:
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor "silent" germline micronuclear genome by a process of "unscrambling" and fragmentation. The tiny macronuclear "nanochromosomes" typically encode single, protein-coding genes (a small portion, 10%, encode 2-8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.
Resumo:
Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries, yet its pathophysiology is incompletely understood. Small-molecule metabolite screens may offer new insights into disease mechanisms and reveal new treatment targets. Methods Discovery (N = 33) and replication (N = 66) of liver biopsies spanning the range from normal liver histology to non-alcoholic steatohepatitis (NASH) were ascertained ensuring rapid freezing under 30 s in patients. 252 metabolites were assessed using GC/MS. Replicated metabolites were evaluated in a murine high-fat diet model of NAFLD. Results In a two-stage metabolic screening, hydroquinone (HQ, pcombined = 3.0 × 10−4) and nicotinic acid (NA, pcombined = 3.9 × 10−9) were inversely correlated with histological NAFLD severity. A murine high-fat diet model of NAFLD demonstrated a protective effect of these two substances against NAFLD: Supplementation with 1% HQ reduced only liver steatosis, whereas 0.6% NA reduced both liver fat content and serum transaminase levels and induced a complex regulatory network of genes linked to NALFD pathogenesis in a global expression pathway analysis. Human nutritional intake of NA equivalent was also consistent with a protective effect of NA against NASH progression. Conclusion This first small-molecular screen of human liver tissue identified two replicated protective metabolites. Either the use of NA or targeting its regulatory pathways might be explored to treat or prevent human NAFLD.
Resumo:
This study describes the patterns of occurrence of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC) of Guam during 1950-1989. Both ALS and PDC occur with high frequency among the indigenous Chamorro population, first recognized in the early 1950's. Reports in the early 1980's indicated that both ALS and PDC were disappearing, due to a purported reduction in exposure to harmful environmental factors as a result of the dramatic changes in lifestyle that took place after World War II. However, this study provides compelling evidence that ALS and PDC have not disappeared on Guam and that rates for both are higher during 1980-1989 than previously reported.^ The patterns of occurrence for both ALS and PDC overlap in most respects: (1) incidence and mortality are decreasing; (2) median age at onset is increasing; (3) males are at increased risk for developing disease; (4) risk is higher for those residing in the south compared to the non-south; and (5) age-specific incidence is decreasing over time except in the oldest age groups.^ Age-specific incidence of ALS and PDC, separately and together, is generally higher for cohorts born before 1920 than for those born after 1920. A significant birth cohort effect on the incidence of PDC for the 1906-1915 birth cohort was found, but not for ALS and for ALS and PDC together. Whether or not a cohort effect, period effect, or both are associated with incidence of ALS and PDC cannot be determined from the data currently available and will require additional follow-up of individuals born after 1920.^ The epidemiological data amassed over this 40-year period provide evidence that supports an environmental exposure model for disease occurrence as opposed to a simple genetic or infectious disease model. Whether neurodegenerative disease in this population occurs as a consequence of a single exposure or is explained by a multifactorial model such as a genetic predisposition with some environmental interaction is yet to be determined. However, descriptive studies such as this can provide clues concerning timing and location of potential adverse exposures but cannot determine etiology, underscoring the urgent need for analytic studies of ALS and PDC to further investigate existing etiologic hypotheses and to test new hypotheses. ^
Resumo:
A complex interaction among metabolic factors, adipose tissue lipolysis, oxidative stress, and insulin resistance results in a deleterious process that may link nonalcoholic fatty liver disease (NAFLD) with severe cardiovascular (CV) outcomes. Patients with NAFLD are at higher risk of atherosclerosis, new onset of CV events, and overall mortality. The strong association between NAFLD and CV disease should affect clinical practice, with screening and surveillance of patients with NAFLD. This review discusses the data linking these major diseases.
Resumo:
OBJECTIVE To analyse the results after elective open total aortic arch replacement. METHODS We analysed 39 patients (median age 63 years, median logistic EuroSCORE 18.4) who underwent elective open total arch replacement between 2005 and 2012. RESULTS In-hospital mortality was 5.1% (n = 2) and perioperative neurological injury was 12.8% (n = 5). The indication for surgery was degenerative aneurysmal disease in 59% (n = 23) and late aneurysmal formation following previous surgery of type A aortic dissection in 35.9% (n = 14); 5.1% (n = 2) were due to anastomotical aneurysms after prior ascending repair. Fifty-nine percent (n = 23) of the patients had already undergone previous proximal thoracic aortic surgery. In 30.8% (n = 12) of them, a conventional elephant trunk was added to total arch replacement, in 28.2% (n = 11), root replacement was additionally performed. Median hypothermic circulatory arrest time was 42 min (21-54 min). Selective antegrade cerebral perfusion was used in 95% (n = 37) of patients. Median follow-up was 11 months [interquartile range (IQR) 1-20 months]. There was no late death and no need for reoperation during this period. CONCLUSIONS Open total aortic arch replacement shows very satisfying results. The number of patients undergoing total arch replacement as a redo procedure and as a part of a complex multisegmental aortic pathology is high. Future strategies will have to emphasize neurological protection in extensive simultaneous replacement of the aortic arch and adjacent segments.
Resumo:
Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications.