881 resultados para Complementary medicine
Resumo:
Num universo despovoado de formas geométricas perfeitas, onde proliferam superfícies irregulares, difíceis de representar e de medir, a geometria fractal revelou-se um instrumento poderoso no tratamento de fenómenos naturais, até agora considerados erráticos, imprevisíveis e aleatórios. Contudo, nem tudo na natureza é fractal, o que significa que a geometria euclidiana continua a ser útil e necessária, o que torna estas geometrias complementares. Este trabalho centra-se no estudo da geometria fractal e na sua aplicação a diversas áreas científicas, nomeadamente, à engenharia. São abordadas noções de auto-similaridade (exata, aproximada), formas, dimensão, área, perímetro, volume, números complexos, semelhança de figuras, sucessão e iterações relacionadas com as figuras fractais. Apresentam-se exemplos de aplicação da geometria fractal em diversas áreas do saber, tais como física, biologia, geologia, medicina, arquitetura, pintura, engenharia eletrotécnica, mercados financeiros, entre outras. Conclui-se que os fractais são uma ferramenta importante para a compreensão de fenómenos nas mais diversas áreas da ciência. A importância do estudo desta nova geometria, é avassaladora graças à sua profunda relação com a natureza e ao avançado desenvolvimento tecnológico dos computadores.