899 resultados para Combinatorial Algorithms
Resumo:
A new approach for rapid resonance assignments in proteins based on amino acid selective unlabeling is presented. The method involves choosing a set of multiple amino acid types for selective unlabeling and identifying specific tripeptides surrounding the labeled residues from specific 2D NMR spectra in a combinatorial manner. The methodology directly yields sequence specific assignments, without requiring a contiguously stretch of amino acid residues to be linked, and is applicable to deuterated proteins. We show that a 2D N-15,H-1]HSQC spectrum with two 2D spectra can result in approximate to 50% assignments. The methodology was applied to two proteins: an intrinsically disordered protein (12kDa) and the 29kDa (268 residue) -subunit of Escherichia coli tryptophan synthase, which presents a challenging case with spectral overlaps and missing peaks. The method can augment existing approaches and will be useful for applications such as identifying active-site residues involved in ligand binding, phosphorylation, or protein-protein interactions, even prior to complete resonance assignments.
Resumo:
A synthetic strategy is outlined whereby a binary cocrystal may be developed in turn into a ternary and finally into a quaternary cocrystal. The strategy hinges on the concept of the long-range synthon Aufbau module (LSAM) which is a large supramolecular synthon containing more than one type of intermolecular interaction. Modulation of these interactions may be possible with the use of additional molecular components so that higher level cocrystals are produced. We report six quaternary cocrystals here. All are obtained as nearly exclusive crystallization products when four appropriate solid compounds are taken together in solution for crystallization.
Resumo:
Variable selection for regression is a classical statistical problem, motivated by concerns that too large a number of covariates may bring about overfitting and unnecessarily high measurement costs. Novel difficulties arise in streaming contexts, where the correlation structure of the process may be drifting, in which case it must be constantly tracked so that selections may be revised accordingly. A particularly interesting phenomenon is that non-selected covariates become missing variables, inducing bias on subsequent decisions. This raises an intricate exploration-exploitation tradeoff, whose dependence on the covariance tracking algorithm and the choice of variable selection scheme is too complex to be dealt with analytically. We hence capitalise on the strength of simulations to explore this problem, taking the opportunity to tackle the difficult task of simulating dynamic correlation structures. © 2008 IEEE.
Resumo:
In this paper, we describe models and algorithms for detection and tracking of group and individual targets. We develop two novel group dynamical models, within a continuous time setting, that aim to mimic behavioural properties of groups. We also describe two possible ways of modeling interactions between closely using Markov Random Field (MRF) and repulsive forces. These can be combined together with a group structure transition model to create realistic evolving group models. We use a Markov Chain Monte Carlo (MCMC)-Particles Algorithm to perform sequential inference. Computer simulations demonstrate the ability of the algorithm to detect and track targets within groups, as well as infer the correct group structure over time. ©2008 IEEE.
Resumo:
Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.