921 resultados para Coding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Transcription of large numbers of non-coding RNAs originating from intronic regions of human genes has been recently reported, but mechanisms governing their biosynthesis and biological functions are largely unknown. In this work, we evaluated the existence of a common mechanism of transcription regulation shared by protein-coding mRNAs and intronic RNAs by measuring the effect of androgen on the transcriptional profile of a prostate cancer cell line. Results Using a custom-built cDNA microarray enriched in intronic transcribed sequences, we found 39 intronic non-coding RNAs for which levels were significantly regulated by androgen exposure. Orientation-specific reverse transcription-PCR indicated that 10 of the 13 were transcribed in the antisense direction. These transcripts are long (0.5–5 kb), unspliced and apparently do not code for proteins. Interestingly, we found that the relative levels of androgen-regulated intronic transcripts could be correlated with the levels of the corresponding protein-coding gene (asGAS6 and asDNAJC3) or with the alternative usage of exons (asKDELR2 and asITGA6) in the corresponding protein-coding transcripts. Binding of the androgen receptor to a putative regulatory region upstream from asMYO5A, an androgen-regulated antisense intronic transcript, was confirmed by chromatin immunoprecipitation. Conclusion Altogether, these results indicate that at least a fraction of naturally transcribed intronic non-coding RNAs may be regulated by common physiological signals such as hormones, and further corroborate the notion that the intronic complement of the transcriptome play functional roles in the human gene-expression program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Myelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of the transcriptional activity in the human genome. Non-coding RNAs (ncRNAs) transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression, and in the regulation of exon-skipping and intron retention. Characterization of ncRNAs in progenitor cells and stromal cells of MDS patients could be strategic for understanding gene expression regulation in this disease. Methods In this study, gene expression profiles of CD34+ cells of 4 patients with MDS of refractory anemia with ringed sideroblasts (RARS) subgroup and stromal cells of 3 patients with MDS-RARS were compared with healthy individuals using 44 k combined intron-exon oligoarrays, which included probes for exons of protein-coding genes, and for non-coding RNAs transcribed from intronic regions in either the sense or antisense strands. Real-time RT-PCR was performed to confirm the expression levels of selected transcripts. Results In CD34+ cells of MDS-RARS patients, 216 genes were significantly differentially expressed (q-value ≤ 0.01) in comparison to healthy individuals, of which 65 (30%) were non-coding transcripts. In stromal cells of MDS-RARS, 12 genes were significantly differentially expressed (q-value ≤ 0.05) in comparison to healthy individuals, of which 3 (25%) were non-coding transcripts. Conclusions These results demonstrated, for the first time, the differential ncRNA expression profile between MDS-RARS and healthy individuals, in CD34+ cells and stromal cells, suggesting that ncRNAs may play an important role during the development of myelodysplastic syndromes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is supported by Brazilian agencies Fapesp, CAPES and CNPq

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de Doctorado: Ingeniería de Telecomunicación Avanzada.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis deals with channel coding theory applied to upper layers in the protocol stack of a communication link and it is the outcome of four year research activity. A specific aspect of this activity has been the continuous interaction between the natural curiosity related to the academic blue-sky research and the system oriented design deriving from the collaboration with European industry in the framework of European funded research projects. In this dissertation, the classical channel coding techniques, that are traditionally applied at physical layer, find their application at upper layers where the encoding units (symbols) are packets of bits and not just single bits, thus explaining why such upper layer coding techniques are usually referred to as packet layer coding. The rationale behind the adoption of packet layer techniques is in that physical layer channel coding is a suitable countermeasure to cope with small-scale fading, while it is less efficient against large-scale fading. This is mainly due to the limitation of the time diversity inherent in the necessity of adopting a physical layer interleaver of a reasonable size so as to avoid increasing the modem complexity and the latency of all services. Packet layer techniques, thanks to the longer codeword duration (each codeword is composed of several packets of bits), have an intrinsic longer protection against long fading events. Furthermore, being they are implemented at upper layer, Packet layer techniques have the indisputable advantages of simpler implementations (very close to software implementation) and of a selective applicability to different services, thus enabling a better matching with the service requirements (e.g. latency constraints). Packet coding technique improvement has been largely recognized in the recent communication standards as a viable and efficient coding solution: Digital Video Broadcasting standards, like DVB-H, DVB-SH, and DVB-RCS mobile, and 3GPP standards (MBMS) employ packet coding techniques working at layers higher than the physical one. In this framework, the aim of the research work has been the study of the state-of-the-art coding techniques working at upper layer, the performance evaluation of these techniques in realistic propagation scenario, and the design of new coding schemes for upper layer applications. After a review of the most important packet layer codes, i.e. Reed Solomon, LDPC and Fountain codes, in the thesis focus our attention on the performance evaluation of ideal codes (i.e. Maximum Distance Separable codes) working at UL. In particular, we analyze the performance of UL-FEC techniques in Land Mobile Satellite channels. We derive an analytical framework which is a useful tool for system design allowing to foresee the performance of the upper layer decoder. We also analyze a system in which upper layer and physical layer codes work together, and we derive the optimal splitting of redundancy when a frequency non-selective slowly varying fading channel is taken into account. The whole analysis is supported and validated through computer simulation. In the last part of the dissertation, we propose LDPC Convolutional Codes (LDPCCC) as possible coding scheme for future UL-FEC application. Since one of the main drawbacks related to the adoption of packet layer codes is the large decoding latency, we introduce a latency-constrained decoder for LDPCCC (called windowed erasure decoder). We analyze the performance of the state-of-the-art LDPCCC when our decoder is adopted. Finally, we propose a design rule which allows to trade-off performance and latency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questa Tesi aspira a mostrare un codice a livello di pacchetto, che abbia performance molto vicine a quello ottimo, per progetti di comunicazioni Satellitari. L’altro scopo di questa Tesi è quello di capire se rimane ancora molto più difficile maneggiare direttamente gli errori piuttosto che le erasures. Le applicazioni per comunicazioni satellitari ora come ora usano tutte packet erasure coding per codificare e decodificare l’informazione. La struttura dell’erasure decoding è molto semplice, perché abbiamo solamente bisogno di un Cyclic Redundancy Check (CRC) per realizzarla. Il problema nasce quando abbiamo pacchetti di dimensioni medie o piccole (per esempio più piccole di 100 bits) perché in queste situazioni il costo del CRC risulta essere troppo dispendioso. La soluzione la possiamo trovare utilizzando il Vector Symbol Decoding (VSD) per raggiungere le stesse performance degli erasure codes, ma senza la necessità di usare il CRC. Per prima cosa viene fatta una breve introduzione su come è nata e su come si è evoluta la codifica a livello di pacchetto. In seguito è stato introdotto il canale q-ary Symmetric Channel (qSC), con sia la derivazione della sua capacità che quella del suo Random Coding Bound (RCB). VSD è stato poi proposto con la speranza di superare in prestazioni il Verification Based Decoding (VBD) su il canale qSC. Infine, le effettive performance del VSD sono state stimate via simulazioni numeriche. I possibili miglioramenti delle performance, per quanto riguarda il VBD sono state discusse, come anche le possibili applicazioni future. Inoltre abbiamo anche risposto alla domande se è ancora così tanto più difficile maneggiare gli errori piuttosto che le erasure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many psychophysical studies suggest that target depth and direction during reaches are processed independently, but the neurophysiological support to this view is so far limited. Here, we investigated the representation of reach depth and direction by single neurons in an area of the medial posterior parietal cortex (V6A). Single-unit activity was recorded from V6A in two Macaca fascicularis monkeys performing a fixation-to-reach task to targets at different depths and directions. We found that in a substantial percentage of V6A neurons depth and direction signals jointly influenced fixation, planning and arm movement-related activity in 3D space. While target depth and direction were equally encoded during fixation, depth tuning became stronger during arm movement planning, execution and target holding. The spatial tuning of fixation activity was often maintained across epochs, and this occurred more frequently in depth. These findings support for the first time the existence of a common neural substrate for the encoding of target depth and direction during reaching movements in the posterior parietal cortex. Present results also highlight the presence in V6A of several types of cells that process independently or jointly eye position and arm movement planning and execution signals in order to control reaches in 3D space. It is possible that depth and direction influence also the metrics of the reach action and that this effect on the reach kinematic variables can account for the spatial tuning we found in V6A neural activity. For this reason, we recorded and analyzed behavioral data when one monkey performed reaching movements in 3-D space. We evaluated how the target spatial position, in particular target depth and target direction, affected the kinematic parameters and trajectories describing the motor action properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La popolarita` dei giochi online e` in crescita, ma allo stesso tempo le architetture proposte dagli sviluppatori e le connessioni di cui sono dotati gli utenti sembrano restare non adeguate a questo. Nella tesi si descrive un'architettura peer-to-peer che riesce ad effettuare una riduzione nella perdita dei pacchetti grazie al meccanismo del Network Coding senza effetti collaterali per la latenza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcribed ultraconserved regions (T-UCRs) are a group of long non-coding RNAs involved in human carcinogenesis. The factors regulating the expression of T-UCRs and their mechanism of action in human cancers are unknown. In this work it was shown that high expression of uc.339 associates with lower survival in 204 non-small cell lung cancer (NSCLC) patients. Moreover, it was shown that uc.339 found up-regulated in archival NSCLC samples, acts as a decoy RNA for miR-339-3p, -663-3p and -95-5p. So, Cyclin E2, a direct target of three microRNAs is up-regulated, inducing cancer growth and migration. Evidence of this mechanism was provided from cell lines and primary samples confirming that TP53 directly regulates uc.339. These results support a key role for uc.339 in lung cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new idea for waveform coding using vector quantisation (VQ) is introduced. This idea makes it possible to deal with codevectors much larger than before for a fixed bit per sample rate. Also a solution to the matching problem (inherent in the present context) in the &-norm describing a measure of neamess is presented. The overall computational complexity of this solution is O(n3 log, n). Sample results are presented to demonstrate the advantage of using this technique in the context of coding of speech waveforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract- In this correspondence, a simple one-dimensional (1-D) differencing operation is applied to bilevel images prior to block coding to produce a sparse binary image that can be encoded efficiently using any of a number of well-known techniques. The difference image can be encoded more efficiently than the original bilevel image whenever the average run length of black pixels in the original image is greater than two. Compression is achieved because the correlation between adjacent pixels is reduced compared with the original image. The encoding/decoding operations are described and compression performance is presented for a set of standard bilevel images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Keratins 8 and 18 (K8/K18) are intermediate filament proteins that protect the liver from various forms of injury. Exonic K8/K18 variants associate with adverse outcome in acute liver failure and with liver fibrosis progression in patients with chronic hepatitis C infection or primary biliary cirrhosis. Given the association of K8/K18 variants with end-stage liver disease and progression in several chronic liver disorders, we studied the importance of keratin variants in patients with hemochromatosis. Methods The entire K8/K18 exonic regions were analyzed in 162 hemochromatosis patients carrying homozygous C282Y HFE (hemochromatosis gene) mutations. 234 liver-healthy subjects were used as controls. Exonic regions were PCR-amplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Previously-generated transgenic mice overexpressing K8 G62C were studied for their susceptibility to iron overload. Susceptibility to iron toxicity of primary hepatocytes that express K8 wild-type and G62C was also assessed. Results We identified amino-acid-altering keratin heterozygous variants in 10 of 162 hemochromatosis patients (6.2%) and non-coding heterozygous variants in 6 additional patients (3.7%). Two novel K8 variants (Q169E/R275W) were found. K8 R341H was the most common amino-acid altering variant (4 patients), and exclusively associated with an intronic KRT8 IVS7+10delC deletion. Intronic, but not amino-acid-altering variants associated with the development of liver fibrosis. In mice, or ex vivo, the K8 G62C variant did not affect iron-accumulation in response to iron-rich diet or the extent of iron-induced hepatocellular injury. Conclusion In patients with hemochromatosis, intronic but not exonic K8/K18 variants associate with liver fibrosis development.