993 resultados para Cochlear implantes
Resumo:
Programa de doctorado: Avances en Traumatología, Medicina del Deporte, Cuidados de Heridas (interdepartamental)
Resumo:
A new hearing therapy based on direct acoustic cochlear stimulation was developed for the treatment of severe to profound mixed hearing loss. The device efficacy was validated in an initial clinical trial with four patients. This semi-implantable investigational device consists of an externally worn audio processor, a percutaneous connector, and an implantable microactuator. The actuator is placed in the mastoid bone, right behind the external auditory canal. It generates vibrations that are directly coupled to the inner ear fluids and that, therefore, bypass the external and the middle ear. The system is able to provide an equivalent sound pressure level of 125 dB over the frequency range between 125 and 8000 Hz. The hermetically sealed actuator is designed to provide maximal output power by keeping its dimensions small enough to enable implantation. A network model is used to simulate the dynamic characteristics of the actuator to adjust its transfer function to the characteristics of the middle ear. The geometry of the different actuator components is optimized using finite-element modeling.
Resumo:
To test whether in-the-canal (ITC) microphones have an impact on spatial discrimination and speech perception by taking advantage of auricular cues.
Resumo:
This study aimed to assess speech perception and communication skills in adolescents between ages 8 and 18 that received cochlear implants for pre- and peri-lingual deafness.
Resumo:
Postmeningitic basal turn ossification is a challenge for successful cochlear implantation despite the availability of sophisticated implants and advanced drill-out procedures. A less complex concept consisting of a cochleostomy near the apex with retrograde array insertion is evaluated clinically and experimentally with emphasis on imaging of intracochlear array morphology.
Resumo:
Conclusion: A robot built specifically for stereotactic cochlear implantation provides equal or better accuracy levels together with a better integration into a clinical environment, when compared to existing approaches based on industrial robots. Objectives: To evaluate the technical accuracy of a robotic system developed specifically for lateral skull base surgery in an experimental setup reflecting the intended clinical application. The invasiveness of cochlear electrode implantation procedures may be reduced by replacing the traditional mastoidectomy with a small tunnel slightly larger in diameter than the electrode itself. Methods: The end-to-end accuracy of the robot system and associated image-guided procedure was evaluated on 15 temporal bones of whole head cadaver specimens. The main components of the procedure were as follows: reference screw placement, cone beam CT scan, computer-aided planning, pair-point matching of the surgical plan, robotic drilling of the direct access tunnel, and post-operative cone beam CT scan and accuracy assessment. Results: The mean accuracy at the target point (round window) was 0.56 ± 41 mm with an angular misalignment of 0.88 ± 0.41°. The procedural time of the registration process through the completion of the drilling procedure was 25 ± 11 min. The robot was fully operational in a clinical environment.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice. Addition of GFRα1-Fc increases this effect. GDNF/GFRα1-Fc stimulation activates intracellular PI3K/Akt and MEK/Erk signaling cascades as detected by Western blot analysis of cultures prepared from rats at postnatal days 5 (P5, before the onset of hearing) and 20 (P20, after the onset of hearing). Both cascades mediate GDNF stimulation of neuritogenesis, since application of the Akt inhibitor Wortmannin or the Erk inhibitor U0126 abolished GDNF/GFRα1-Fc stimulated neuritogenesis in P5 rats. Since cultures of P5 NCAM-deficient mice failed to respond by neuritogenesis to GDNF/GFRα1-Fc, we conclude that NCAM serves as a receptor for GDNF signaling responsible for neuritogenesis in early postnatal spiral ganglion.
Resumo:
In this prospective multicenter study, tinnitus loudness and tinnitus-related distress were investigated in 174 cochlear implant (CI) candidates who underwent CI surgery at a Swiss cochlear implant center. All subjects participated in two session, one preoperatively and one 6 months after device activation. In both sessions, tinnitus loudness was assessed using a visual analogue scale and tinnitus distress using a standardized tinnitus questionnaire. The data were compared with unaided pre- and postoperative pure tone thresholds, and postoperative speech reception scores. 71.8% of the subjects reported tinnitus preoperatively. Six months after CI surgery 20.0% of these reported abolition of their tinnitus, 51.2% a subjective improvement, 21.6% no change and 7.2% a deterioration. Of the 49 (28.2%) subjects with no tinnitus preoperatively, 5 developed tinnitus 6 months after CI. These 5 had poorer speech understanding after CI surgery with their device than the group who remained tinnitus free. We found no correlation between tinnitus improvement, age, duration of tinnitus, or change in unaided hearing thresholds between the two sessions.