1000 resultados para Climacteric Scale
An FETI-preconditioned conjuerate gradient method for large-scale stochastic finite element problems
Resumo:
In the spectral stochastic finite element method for analyzing an uncertain system. the uncertainty is represented by a set of random variables, and a quantity of Interest such as the system response is considered as a function of these random variables Consequently, the underlying Galerkin projection yields a block system of deterministic equations where the blocks are sparse but coupled. The solution of this algebraic system of equations becomes rapidly challenging when the size of the physical system and/or the level of uncertainty is increased This paper addresses this challenge by presenting a preconditioned conjugate gradient method for such block systems where the preconditioning step is based on the dual-primal finite element tearing and interconnecting method equipped with a Krylov subspace reusage technique for accelerating the iterative solution of systems with multiple and repeated right-hand sides. Preliminary performance results on a Linux Cluster suggest that the proposed Solution method is numerically scalable and demonstrate its potential for making the uncertainty quantification Of realistic systems tractable.
Resumo:
The Capercaillie (Tetrao urogallus L.) is often used as a focal species for landscape ecological studies: the minimum size for its lekking area is 300 ha, and the annual home range for an individual may cover 30 80 km2. In Finland, Capercaillie populations have decreased by approximately 40 85%, with the declines likely to have started in the 1940s. Although the declines have partly stabilized from the 1990s onwards, it is obvious that the negative population trend was at least partly caused by changes in human land use. The aim of this thesis was to study the connections between human land use and Capercaillie populations in Finland, using several spatial and temporal scales. First, the effect of forest age structure on Capercaillie population trends was studied in 18 forestry board districts in Finland, during 1965 1988. Second, the abundances of Capercaillie and Moose (Alces alces L.) were compared in terms of several land-use variables on a scale of 50 × 50 km grids and in five regions in Finland. Third, the effects of forest cover and fine-grain forest fragmentation on Capercaillie lekking area persistence were studied in three study locations in Finland, on 1000 and 3000 m spatial scales surrounding the leks. The analyses considering lekking areas were performed with two definitions for forest: > 60 and > 152 m3ha 1 of timber volume. The results show that patterns and processes at large spatial scales strongly influence Capercaillie in Finland. In particular, in southwestern and eastern Finland, high forest cover and low human impact were found to be beneficial for this species. Forest cover (> 60 m3ha 1 of timber) surrounding the lekking sites positively affected lekking area persistence only at the larger landscape scale (3000 m radius). The effects of older forest classes were hard to assess due to scarcity of older forests in several study areas. Young and middle-aged forest classes were common in the vicinity of areas with high Capercaillie abundances especially in northern Finland. The increase in the amount of younger forest classes did not provide a good explanation for Capercaillie population decline in 1965 1988. In addition, there was no significant connection between mature forests (> 152 m3ha 1 of timber) and lekking area persistence in Finland. It seems that in present-day Finnish landscapes, area covered with old forest is either too scarce to efficiently explain the abundance of Capercaillie and the persistence of the lekking areas, or the effect of forest age is only important when considering smaller spatial scales than the ones studied in this thesis. In conclusion, larger spatial scales should be considered for assessing the future Capercaillie management. According to the proposed multi-level planning, the first priority should be to secure the large, regional-scale forest cover, and the second priority should be to maintain fine-grained, heterogeneous structure within the separate forest patches. A management unit covering hundreds of hectares, or even tens or hundreds of square kilometers, should be covered, which requires regional-level land-use planning and co-operation between forest owners.
Resumo:
The problem of unsupervised anomaly detection arises in a wide variety of practical applications. While one-class support vector machines have demonstrated their effectiveness as an anomaly detection technique, their ability to model large datasets is limited due to their memory and time complexity for training. To address this issue for supervised learning of kernel machines, there has been growing interest in random projection methods as an alternative to the computationally expensive problems of kernel matrix construction and sup-port vector optimisation. In this paper we leverage the theory of nonlinear random projections and propose the Randomised One-class SVM (R1SVM), which is an efficient and scalable anomaly detection technique that can be trained on large-scale datasets. Our empirical analysis on several real-life and synthetic datasets shows that our randomised 1SVM algorithm achieves comparable or better accuracy to deep auto encoder and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.
Resumo:
- Background Expressed emotion (EE) captures the affective quality of the relationship between family caregivers and their care recipients and is known to increase the risk of poor health outcomes for caregiving dyads. Little is known about expressed emotion in the context of caregiving for persons with dementia, especially in non-Western cultures. The Family Attitude Scale (FAS) is a psychometrically sound self-reporting measure for EE. Its use in the examination of caregiving for patients with dementia has not yet been explored. - Objectives This study was performed to examine the psychometric properties of the Chinese version of the FAS (FAS-C) in Chinese caregivers of relatives with dementia, and its validity in predicting severe depressive symptoms among the caregivers. - Methods The FAS was translated into Chinese using Brislin's model. Two expert panels evaluated the semantic equivalence and content validity of this Chinese version (FAS-C), respectively. A total of 123 Chinese primary caregivers of relatives with dementia were recruited from three elderly community care centers in Hong Kong. The FAS-C was administered with the Chinese versions of the 5-item Mental Health Inventory (MHI-5), the Zarit Burden Interview (ZBI) and the Revised Memory and Behavioral Problem Checklist (RMBPC). - Results The FAS-C had excellent semantic equivalence with the original version and a content validity index of 0.92. Exploratory factor analysis identified a three-factor structure for the FAS-C (hostile acts, criticism and distancing). Cronbach's alpha of the FAS-C was 0.92. Pearson's correlation indicated that there were significant associations between a higher score on the FAS-C and greater caregiver burden (r = 0.66, p < 0.001), poorer mental health of the caregivers (r = −0.65, p < 0.001) and a higher level of dementia-related symptoms (frequency of symptoms: r = 0.45, p < 0.001; symptom disturbance: r = 0.51, p < 0.001), which serves to suggest its construct validity. For detecting severe depressive symptoms of the family caregivers, the receiving operating characteristics (ROC) curve had an area under curve of 0.78 (95% confidence interval (CI) = 0.69–0.87, p < 0.0001). The optimal cut-off score was >47 with a sensitivity of 0.720 (95% CI = 0.506–0.879) and specificity of 0.742 (95% CI = 0.643–0.826). - Conclusions The FAS-C is a reliable and valid measure to assess the affective quality of the relationship between Chinese caregivers and their relatives with dementia. It also has acceptable predictability in identifying family caregivers with severe depressive symptoms.
Resumo:
This paper represents the effect of nonlocal scale parameter on the wave propagation in multi-walled carbon nanotubes (MWCNTs). Each wall of the MWCNT is modeled as first order shear deformation beams and the van der Waals interactions between the walls are modeled as distributed springs. The studies shows that the scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or group speed tends to zero). The frequency at which this phenomenon occurs is called the ``Escape frequency''. The analysis shows that, for a given N-walled carbon nanotube (CNT). the nonlocal scaling parameter has a significant effect on the shear wave modes of the N - 1 walls. The escape frequencies of the flexural and shear wave modes of the N-walls are inversely proportionl to the nonlocal scaling parameter. It is also shown that the cut-off frequencies are independent of the nonlocal scale parameter. (C) 2009 Elsevier B.V. All rights reserved.
Diurnal-scale signatures of monsoon rainfall over the Indian region from TRMM satellite observations
Resumo:
One of the most important modes of summer season precipitation variability over the Indian region, the diurnal cycle, is studied using the Tropical Rainfall Measuring Mission 3-hourly, 0.25 degrees x 0.25 degrees 3B42 rainfall product for nine years (1999-2007). Most previous studies have provided an analysis of a single year or a few years of satellite-or station-based rainfall data. Our study aims to systematically analyze the statistical characteristics of the diurnal-scale signature of rainfall over the Indian and surrounding regions. Using harmonic analysis, we extract the signal corresponding to diurnal and subdiurnal variability. Subsequently, the 3-hourly time period or the octet of rainfall peak for this filtered signal, referred to as the ``peak octet,'' is estimated, with care taken to eliminate spurious peaks arising out of Gibbs oscillations. Our analysis suggests that over the Bay of Bengal, there are three distinct modes of the peak octet of diurnal rainfall corresponding to 1130, 1430, and 1730 Indian standard time (IST), from the north central to south bay. This finding could be seen to be consistent with southward propagation of the diurnal rainfall pattern reported by earlier studies. Over the Arabian Sea, there is a spatially coherent pattern in the mode of the peak octet (1430 IST), in a region where it rains for more than 30% of the time. In the equatorial Indian Ocean, while most of the western part shows a late night/early morning peak, the eastern part does not show a spatially coherent pattern in the mode of the peak octet owing to the occurrence of a ual maxima (early morng and early/late afternoon). The imalayan foothills were found to have a mode of peak octet corresponding to 0230 IST, whereas over the Burmese mountains and the Western Ghats (west coast of India) the rainfall peaks during late afternoon/early evening (1430-1730 IST). This implies that the phase of the diurnal cycle over inland orography (e. g., Himalayas) is significantly different from coastal orography (e. g., Western Ghats). We also find that over the Gangetic plains, the peak octet is around 1430 IST, a few hours earlier compared to the typical early evening maxima over land.
Resumo:
Scales provide optical disguise, low water drag and mechanical protection to fish, enabling them to survive catastrophic environmental disasters, predators and microorganisms. The unique structures and stacking sequences of fish scales inspired the fabrication of artificial nanostructures with salient optical, interfacial and mechanical properties. Herein, we describe fish-scale bio-inspired multifunctional ZnO nanostructures that have similar morphology and structure to the cycloid scales of the Asian Arowana. These nanostructured coatings feature tunable light refraction and reflection, modulated surface wettability and damage-tolerant mechanical properties. The salient properties of these multifunctional nanostructures are promising for applications in: - (i) optical coatings, sensing or lens arrays for use in reflective displays, packing, advertising and solar energy harvesting; - (ii) self-cleaning surfaces, including anti-smudge, anti-fouling and anti-fogging, and self-sterilizing surfaces, and; - (iii) mechanical/chemical barrier coatings. This study provides a low-cost and large-scale production method for the facile fabrication of these bio-inspired nanostructures and provides new insights for the development of novel functional materials for use in 'smart' structures and applications.
Resumo:
The early stages of plasticity in KBr single crystals have been studied by means of nano-meter-scale indentation in complementary experiments using both a nanoindenter and an atomic force microscope. Nanoindentafion experiments precisely correlate indentation depth and forces, while force microscopy provides high-resolution force measurements and images of the surface revealing dislocation activity. The two methods provide very similar results for the onset of plasticity in KBr. Upon loading we observe yield of the surface in atomic layer units which we attribute to the nucleation of single dislocations. Unloading is accompanied by plastic recovery as evident from a non-linear force distance unloading curve and delayed discrete plasticity events.
Resumo:
Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.
Resumo:
Mixed-species flocks of foraging birds have been documented from terrestrial habitats all over the world and are thought to form for either improved feeding efficiency or better protection from predators. Two kinds of flock participants are recognized: those that join other species ('followers') and are therefore likely to be the recipients of the benefits of flock participation and those that are joined ('leaders'). Through comparative analyses, using a large sample of flocks from around the world, we show that (1) 'followers' tend to be smaller, more insectivorous, and feed in higher strata than matched species that participate in flocks to a lesser extent and (2) 'leaders' tend to be cooperative breeders more often than matched species that are not known to lead flocks. Furthermore, meta-analyses of published results from across the world showed that bird species in terrestrial mixed-species flocks increase foraging rates and reduce vigilance compared to when they are solitary or in conspecific groups. Moreover, the increase in foraging rates is seen only with flock followers and not flock leaders. These findings suggest a role for predation in the evolution of mixed-species flocking. Species that are vulnerable to predation follow species whose vigilance they can exploit. By doing so, they are able to reduce their own vigilance and forage at higher rates. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Creating nanoscale heterostructures with molecular-scale (<2 nm) metal wires is critical for many applications and remains a challenge. Here, we report the first time synthesis of nanoscale heterostructures with single-crystal molecular-scale Au nanowires attached to different nanostructure substrates. Our method involves the formation of Au nanoparticle seeds by the reduction of rocksalt AuCl nanocubes heterogeneously nucleated on the Substrates and subsequent nanowire growth by oriented attachment of Au nanoparticles from the Solution phase. Nanoscale heterostructures fabricated by such site-specific nucleation and growth are attractive for many applications including nanoelectronic device wiring, catalysis, and sensing.
Resumo:
Optimization in energy consumption of the existing synchronization mechanisms can lead to substantial gains in terms of network life in Wireless Sensor Networks (WSNs). In this paper, we analyze ERBS and TPSN, two existing synchronization algorithms for WSNs which use widely different approach, and compare their performance in large scale WSNs each of which consists of different type of platform and has varying node density. We, then, propose a novel algorithm, PROBESYNC, which takes advantage of differences in power required to transmit and receive a message on ERBS and TPSN and leverages the shortcomings of each of these algorithms. This leads to considerable improvement in energy conservation and enhanced life of large scale WSNs.
Resumo:
Oxygen transfer rate and the corresponding power requirement to operate the rotor are vital for design and scale-up of surface aerators. Present study develops simulation or scale-up criterion correlating the oxygen transsimulation fer coefficient and power number along with a parameter governing theoretical power per unit volume (X, which is defined as equal to (FR1/3)-R-4/3, where F and R are impellers' Fronde and Reynolds number, respectively). Based on such scale-up criteria, design considerations are developed to save energy requirements while designing square tank surface aerators. It has been demonstrated that energy can be saved substantially if the aeration tanks are run at relatively higher input powers. It is also demonstrated that smaller sized tanks are more energy conservative and economical when compared to big sized tanks, while aerating the same volume of water, and at the same time by maintaining a constant input power in all the tanks irrespective of their size. An example illustrating how energy can be reduced while designing different sized aerators is given. The results presented have a wide application in biotechnology and bioengineering areas with a particular emphasis on the design of appropriate surface aeration systems.
Resumo:
Oxygen transfer rate and the corresponding power requirement to operate the rotor are vital for design and scale-up of surface aerators. Present study develops simulation or scale-up criterion correlating the oxygen transsimulation fer coefficient and power number along with a parameter governing theoretical power per unit volume (X, which is defined as equal to (FR1/3)-R-4/3, where F and R are impellers' Fronde and Reynolds number, respectively). Based on such scale-up criteria, design considerations are developed to save energy requirements while designing square tank surface aerators. It has been demonstrated that energy can be saved substantially if the aeration tanks are run at relatively higher input powers. It is also demonstrated that smaller sized tanks are more energy conservative and economical when compared to big sized tanks, while aerating the same volume of water, and at the same time by maintaining a constant input power in all the tanks irrespective of their size. An example illustrating how energy can be reduced while designing different sized aerators is given. The results presented have a wide application in biotechnology and bioengineering areas with a particular emphasis on the design of appropriate surface aeration systems.