942 resultados para Classification of sciences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatively little examination of the meals that are prepared in households has been conducted, despite their well-defined properties and widespread community interest in their preparation. The purpose of the present study was to identify the patterns of main meal preparation among Australian adult household meal preparers aged 44 years and younger and 45 years and over, and the relationships between these patterns and likely socio-demographic and psychological predictors. An online cross-sectional survey was conducted by Meat and Livestock Australia among a representative sample of people aged 18–65 years in Australia in 2011. A total of 1076 usable questionnaires were obtained, which included categorical information about the main meal dishes that participants had prepared during the previous 6 months along with demographic information, the presence or absence of children at home, confidence in seasonal food knowledge and personal values. Latent class analysis was applied and four types of usage patterns of thirty-three popular dishes were identified for both age groups, namely, high variety, moderate variety, high protein but low beef and low variety. The meal patterns were associated differentially with the covariates between the age groups. For example, younger women were more likely to prepare a high or moderate variety of meals than younger men, while younger people who had higher levels of education were more likely to prepare high-protein but low-beef meals. Moreover, young respondents with higher BMI were less likely to prepare meals with high protein but low beef content. Among the older age group, married people were more likely to prepare a high or moderate variety of meals than people without partners. Older people who held strong universalist values were more likely to prepare a wide variety of meals with high protein but low beef content. For both age groups, people who had children living at home and those with better seasonal food knowledge were more likely to prepare a high variety of dishes. The identification of classes of meal users would enable health communication to be tailored to improve meal patterns. Moreover, the concept of meals may be useful for health promotion, because people may find it easier to change their consumption of meals rather than individual foods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is currently considerable imprecision in the nosology of biomarkers used in the study of neuropsychiatric disease. The neuropsychiatric field lags behind others such as oncology, wherein, rather than using 'biomarker' as a blanket term for a diverse range of clinical phenomena, biomarkers have been actively classified into separate categories, including prognostic and predictive tests. A similar taxonomy is proposed for neuropsychiatric diseases in which the core biology remains relatively unknown. This paper divides potential biomarkers into those of (1) risk, (2) diagnosis/trait, (3) state or acuity, (4) stage, (5) treatment response and (6) prognosis, and provides illustrative exemplars. Of course, biomarkers rely on available technology and, as we learn more about the neurobiological correlates of neuropsychiatric disorders, we will realize that the classification of biomarkers across these six categories can change, and some markers may fit into more than one category.Molecular Psychiatry advance online publication, 28 October 2014; doi:10.1038/mp.2014.139.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthcare plays an important role in promoting the general health and well-being of people around the world. The difficulty in healthcare data classification arises from the uncertainty and the high-dimensional nature of the medical data collected. This paper proposes an integration of fuzzy standard additive model (SAM) with genetic algorithm (GA), called GSAM, to deal with uncertainty and computational challenges. GSAM learning process comprises three continual steps: rule initialization by unsupervised learning using the adaptive vector quantization clustering, evolutionary rule optimization by GA and parameter tuning by the gradient descent supervised learning. Wavelet transformation is employed to extract discriminative features for high-dimensional datasets. GSAM becomes highly capable when deployed with small number of wavelet features as its computational burden is remarkably reduced. The proposed method is evaluated using two frequently-used medical datasets: the Wisconsin breast cancer and Cleveland heart disease from the UCI Repository for machine learning. Experiments are organized with a five-fold cross validation and performance of classification techniques are measured by a number of important metrics: accuracy, F-measure, mutual information and area under the receiver operating characteristic curve. Results demonstrate the superiority of the GSAM compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus helpful as a decision support system for medical practitioners in the healthcare practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new multi-output interval type-2 fuzzy logic system (MOIT2FLS) that is automatically constructed from unsupervised data clustering method and trained using heuristic genetic algorithm for a protein secondary structure classification. Three structure classes are distinguished including helix, strand (sheet) and coil which correspond to three outputs of the MOIT2FLS. Quantitative properties of amino acids are used to characterize the twenty amino acids rather than the widely used computationally expensive binary encoding scheme. Amino acid sequences are parsed into learnable patterns using a local moving window strategy. Three clustering tasks are performed using the adaptive vector quantization method to derive an equal number of initial rules for each type of secondary structure. Genetic algorithm is applied to optimally adjust parameters of the MOIT2FLS with the purpose of maximizing the Q3 measure. Comprehensive experimental results demonstrate the strong superiority of the proposed approach over the traditional methods including Chou-Fasman method, Garnier-Osguthorpe-Robson method, and artificial neural network models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we evaluated the potential of using bathymetric Light Detection and Ranging (LiDAR) to characterise shallow water (<30 m) benthic habitats of high energy subtidal coastal environments. Habitat classification, quantifying benthic substrata and macroalgal communities, was achieved in this study with the application of LiDAR and underwater video groundtruth data using automated classification techniques. Bathymetry and reflectance datasets were used to produce secondary terrain derivative surfaces (e.g., rugosity, aspect) that were assumed to influence benthic patterns observed. An automated decision tree classification approach using the Quick Unbiased Efficient Statistical Tree (QUEST) was applied to produce substrata, biological and canopy structure habitat maps of the study area. Error assessment indicated that habitat maps produced were primarily accurate (>70%), with varying results for the classification of individual habitat classes; for instance, producer accuracy for mixed brown algae and sediment substrata, was 74% and 93%, respectively. LiDAR was also successful for differentiating canopy structure of macroalgae communities (i.e., canopy structure classification), such as canopy forming kelp versus erect fine branching algae. In conclusion, habitat characterisation using bathymetric LiDAR provides a unique potential to collect baseline information about biological assemblages and, hence, potential reef connectivity over large areas beyond the range of direct observation. This research contributes a new perspective for assessing the structure of subtidal coastal ecosystems, providing a novel tool for the research and management of such highly dynamic marine environments. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Understanding neural functions requires the observation of the activities of single neurons that are represented via electrophysiological data. Processing and understanding these data are challenging problems in biomedical engineering. A microelectrode commonly records the activity of multiple neurons. Spike sorting is a process of classifying every single action potential (spike) to a particular neuron. This paper proposes a combination between diffusion maps (DM) and mean shift clustering method for spike sorting. DM is utilized to extract spike features, which are highly capable of discriminating different spike shapes. Mean shift clustering provides an automatic unsupervised clustering, which takes extracted features from DM as inputs. Experimental results show a noticeable dominance of the features extracted by DM compared to those selected by wavelet transformation (WT). Accordingly, the proposed integrated method is significantly superior to the popular existing combination of WT and superparamagnetic clustering regarding spike sorting accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, two real-world medical classification problems using electrocardiogram (ECG) and auscultatory blood pressure (Korotkoff) signals are examined. A total of nine machine learning models are applied to perform classification of the medical data sets. A number of useful performance metrics which include accuracy, sensitivity, specificity, as well as the area under the receiver operating characteristic curve are computed. In addition to the original data sets, noisy data sets are generated to evaluate the robustness of the classifiers against noise. The 10-fold cross validation method is used to compute the performance statistics, in order to ensure statistically reliable results pertaining to classification of the ECG and Korotkoff signals are produced. The outcomes indicate that while logistic regression models perform the best with the original data set, ensemble machine learning models achieve good accuracy rates with noisy data sets.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background : High levels of child obesity are triggering growing concerns about the prevalence and effects of food advertising targeted at children. Efforts to address this advertising are confounded by the expanding repertoire of media and promotional techniques used to reach and attract children. The present study explored parents’ views on food marketing and the strategies parents employ when attempting to ameliorate its effects. As part of an online survey of Australian parents’ attitudes towards a range of food advertisements, respondents were invited to provide additional comment in an open-ended question. The question was optional and asked “Are there any other comments you would like to make?”. One in five of the survey respondents (18%; n = 235) elected to answer this question by discussing their views on food advertising and children’s diets. The responses were imported into NVivo10 for coding and analysis. A grounded approach was used to draw meaning from the data and develop a proposed conceptual classification of parents’ attributions relating to food advertising and its consequences.

Results : The majority of responses related to the negative perceived effects of unhealthy food advertising on children’s diets, with few respondents considering such advertisements to be innocuous. The responses were classified into four conceptual categories reflecting differing attitudes to advertising (negative to neutral) and varying levels of locus of control (low to high). The typical characteristics of parents allocated to the four categories exhibited variation according to weight status, television viewing habits, education level, and family size. The largest number of responses was coded to the category characterized by a negative attitude toward food advertising and a low locus of control. Parents in this category were more likely than others to be overweight/obese and heavy television viewers. Parents in the negative attitude to advertising and high locus of control category nominated a variety of parenting practices that could form the basis of parent education interventions.

Conclusions : The results suggest that many Australian parents may feel disempowered in the face of high levels of advertising for unhealthy foods. The current voluntary regulatory code appears to be inadequate in scope and coverage to address this situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wearable tracking devices incorporating accelerometers and gyroscopes are increasingly being used for activity analysis in sports. However, minimal research exists relating to their ability to classify common activities. The purpose of this study was to determine whether data obtained from a single wearable tracking device can be used to classify team sport-related activities. Seventy-six non-elite sporting participants were tested during a simulated team sport circuit (involving stationary, walking, jogging, running, changing direction, counter-movement jumping, jumping for distance and tackling activities) in a laboratory setting. A MinimaxX S4 wearable tracking device was worn below the neck, in-line and dorsal to the first to fifth thoracic vertebrae of the spine, with tri-axial accelerometer and gyroscope data collected at 100Hz. Multiple time domain, frequency domain and custom features were extracted from each sensor using 0.5, 1.0, and 1.5s movement capture durations. Features were further screened using a combination of ANOVA and Lasso methods. Relevant features were used to classify the eight activities performed using the Random Forest (RF), Support Vector Machine (SVM) and Logistic Model Tree (LMT) algorithms. The LMT (79-92% classification accuracy) outperformed RF (32-43%) and SVM algorithms (27-40%), obtaining strongest performance using the full model (accelerometer and gyroscope inputs). Processing time can be reduced through feature selection methods (range 1.5-30.2%), however a trade-off exists between classification accuracy and processing time. Movement capture duration also had little impact on classification accuracy or processing time. In sporting scenarios where wearable tracking devices are employed, it is both possible and feasible to accurately classify team sport-related activities.