939 resultados para Channel estimation error
Resumo:
This reported work significantly extends the reach of 10Gbit/s on-off keying singlemode fibre (SMF) transmission using full-field based electronic dispersion compensation (EDC) to 900 km. In addition, the EDC balances the complexity and the adaptation capability by employing a simple dispersive transmission line with static parameters for coarse dispersion compensation and 16-state maximum likelihood sequence estimation with Gaussian approximation based channel training for adaptive impairment trimming. Improved adaptation times of less than 400 ns for a bit error rate target of 10-3 over distances ranging from 0 to 900 km are reported.
Resumo:
This paper studies the performance of a typical non-slope matched transoceanic submarine link using 20Gb/s channel rate and RZ-DPSK modulation with different duty cycles. Through comparison with direct error counting, we have also demonstrated the limitations of the available numerical approaches to the BER estimation for return-to-zero differential phase-shift keying (RZ-DPSK). The numerical results have been confirmed by experiments, and indicate that 20 Gb/s RZ-DPSK transmission is a feasible technique for the upgrade of existing submarine links.
Resumo:
This study analyzes the validity of different Q-factor models in the BER estimation in RZ-DPSK transmission at 40 Gb/s channel rate. The impact of the duty cycle of the carrier pulses on the accuracy of the BER estimates through the different models has also been studied.
Resumo:
Applying direct error counting, we compare the accuracy and evaluate the validity of different available numerical approaches to the estimation of the bit-error rate (BER) in 40-Gb/s return-to-zero differential phase-shift-keying transmission. As a particular example, we consider a system with in-line semiconductor optical amplifiers. We demonstrate that none of the existing models has an absolute superiority over the others. We also reveal the impact of the duty cycle on the accuracy of the BER estimates through the differently introduced Q-factors.
Resumo:
Through direct modeling, a reduction of pattern-dependent errors in a standard fiber-based transmission link at 40 Gbits/s rate is demonstrated by application of a skewed data pre-encoding. The trade-off between the improvement of the bit error rate and the loss in the data rate is examined.
Resumo:
Through modelling of direct error computation, a reduction of pattern- dependent errors in a standard fiber-based transmission link at 40 Gb/s rate is demonstrated by application of a skewed data pre-encoding. The trade-off between the bit-error rate improvement and the data rate loss is examined.
Bit-error rate performance of 20 Gbit/s WDM RZ-DPSK non-slope matched submarine transmission systems
Resumo:
Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.
Resumo:
Direct computation of the bit-error rate (BER) and laboratory experiments are used to assess the performance of a non-slope matched transoceanic submarine transmission link operating at 20Gb/s channel rate and employing return-to-zero differential-phase shift keying (RZ-DPSK) signal modulation. Using this system as an example, we compare the accuracies of the existing theoretical approaches to the BER estimation for the RZ-DPSK format.
Resumo:
This study analyzes the validity of different Q-factor models in the BER estimation in RZ-DPSK transmission at 40 Gb/s channel rate. The impact of the duty cycle of the carrier pulses on the accuracy of the BER estimates through the different models has also been studied.
Resumo:
This paper studies the performance of a typical non-slope matched transoceanic submarine link using 20Gb/s channel rate and RZ-DPSK modulation with different duty cycles. Through comparison with direct error counting, we have also demonstrated the limitations of the available numerical approaches to the BER estimation for return-to-zero differential phase-shift keying (RZ-DPSK). The numerical results have been confirmed by experiments, and indicate that 20 Gb/s RZ-DPSK transmission is a feasible technique for the upgrade of existing submarine links.
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
Applying direct error counting, we compare the accuracy and evaluate the validity of different available numerical approaches to the estimation of the bit-error rate (BER) in 40-Gb/s return-to-zero differential phase-shift-keying transmission. As a particular example, we consider a system with in-line semiconductor optical amplifiers. We demonstrate that none of the existing models has an absolute superiority over the others. We also reveal the impact of the duty cycle on the accuracy of the BER estimates through the differently introduced Q-factors. © 2007 IEEE.
Resumo:
Through direct modeling, a reduction of pattern-dependent errors in a standard fiber-based transmission link at 40 Gbits/s rate is demonstrated by application of a skewed data pre-encoding. The trade-off between the improvement of the bit error rate and the loss in the data rate is examined. © 2007 Optical Society of America.
Resumo:
Error free propagation of a single polarisation optical time division multiplexed 40 Gbit/s dispersion managed pulsed data stream over dispersion (non-shifted) fibre. This distance is twice the previous record at this data rate.
Resumo:
Through modelling of direct error computation, a reduction of pattern- dependent errors in a standard fiber-based transmission link at 40 Gb/s rate is demonstrated by application of a skewed data pre-encoding. The trade-off between the bit-error rate improvement and the data rate loss is examined.