943 resultados para Cement-Based Composites
Resumo:
Flexible and thin single layer microwave absorbers based on strontium ferrite–carbon black–nitrile rubber composites have been fabricated employing a specific recipe and their reflection loss characteristics were studied in the S (2–4 GHz) and X-bands (8–12 GHz). The incorporation of carbon black not only reinforces the rubber by improving the mechanical properties of the composite but also modifies the dielectric permittivity of the composite. Strontium ferrite when impregnated into a rubber matrix imparts the required magnetic permeability to the composite. The combination of strontium ferrite and carbon black can then be employed to tune the microwave absorption characteristics of the resulting composite. The complex dielectric permittivity and permeability were measured by employing a cavity perturbation technique. The microwave absorption characteristics of composites were modelled in that an electromagnetic wave incident normally on the metal terminated single layer absorber. The influence of filler volume fraction, frequency, absorber thickness on the bandwidth of absorption are discussed and correlated
Resumo:
Flexile single layer electromagnetic wave absorbers were designed by incorporating appropriate amounts of carbon black in a nitrile butadiene rubber matrix along with an optimized amount of magnetic counterpart, namely, barium hexaferrite for applications in S, C, and X-bands. Effective dielectric permittivity and magnetic permeability were measured using cavity perturbation method in the frequency range of 2–12 GHz. The microwave absorbing characteristics of the composites were studied in the S, C, and X-bands employing a model in which an electromagnetic wave is incident normally on a metal terminated single layer. Reflection loss exceeding 20 dB is obtained for all the samples in a wide frequency range of 2–12 GHz when an appropriate absorber thickness between 5 and 9mm is chosen. The impact of carbon black is clearly observed in the optimized composites on the mechanical strength, thickness, band width of absorption, dielectric properties,
Resumo:
The release of growth factors from tissue engineering scaffolds provides signals that influence the migration, differentiation, and proliferation of cells. The incorporation of a drug delivery platform that is capable of tunable release will give tissue engineers greater versatility in the direction of tissue regeneration. We have prepared a novel composite of two biomaterials with proven track records - apatite and poly(lactic-co-glycolic acid) (PLGA) – as a drug delivery platform with promising controlled release properties. These composites have been tested in the delivery of a model protein, bovine serum albumin (BSA), as well as therapeutic proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and rhBMP-6. The controlled release strategy is based on the use of a polymer with acidic degradation products to control the dissolution of the basic apatitic component, resulting in protein release. Therefore, any parameter that affects either polymer degradation or apatite dissolution can be used to control protein release. We have modified the protein release profile systematically by varying the polymer molecular weight, polymer hydrophobicity, apatite loading, apatite particle size, and other material and processing parameters. Biologically active rhBMP-2 was released from these composite microparticles over 100 days, in contrast to conventional collagen sponge carriers, which were depleted in approximately 2 weeks. The released rhBMP-2 was able to induce elevated alkaline phosphatase and osteocalcin expression in pluripotent murine embryonic fibroblasts. To augment tissue engineering scaffolds with tunable and sustained protein release capabilities, these composite microparticles can be dispersed in the scaffolds in different combinations to obtain a superposition of the release profiles. We have loaded rhBMP-2 into composite microparticles with a fast release profile, and rhBMP-6 into slow-releasing composite microparticles. An equi-mixture of these two sets of composite particles was then injected into a collagen sponge, allowing for dual release of the proteins from the collagenous scaffold. The ability of these BMP-loaded scaffolds to induce osteoblastic differentiation in vitro and ectopic bone formation in a rat model is being investigated. We anticipate that these apatite-polymer composite microparticles can be extended to the delivery of other signalling molecules, and can be incorporated into other types of tissue engineering scaffolds.
Resumo:
La present tesi proposa una metodología per a la simulació probabilística de la fallada de la matriu en materials compòsits reforçats amb fibres de carboni, basant-se en l'anàlisi de la distribució aleatòria de les fibres. En els primers capítols es revisa l'estat de l'art sobre modelització matemàtica de materials aleatoris, càlcul de propietats efectives i criteris de fallada transversal en materials compòsits. El primer pas en la metodologia proposada és la definició de la determinació del tamany mínim d'un Element de Volum Representatiu Estadístic (SRVE) . Aquesta determinació es du a terme analitzant el volum de fibra, les propietats elàstiques efectives, la condició de Hill, els estadístics de les components de tensió i defromació, la funció de densitat de probabilitat i les funcions estadístiques de distància entre fibres de models d'elements de la microestructura, de diferent tamany. Un cop s'ha determinat aquest tamany mínim, es comparen un model periòdic i un model aleatori, per constatar la magnitud de les diferències que s'hi observen. Es defineix, també, una metodologia per a l'anàlisi estadístic de la distribució de la fibra en el compòsit, a partir d'imatges digitals de la secció transversal. Aquest anàlisi s'aplica a quatre materials diferents. Finalment, es proposa un mètode computacional de dues escales per a simular la fallada transversal de làmines unidireccionals, que permet obtenir funcions de densitat de probabilitat per a les variables mecàniques. Es descriuen algunes aplicacions i possibilitats d'aquest mètode i es comparen els resultats obtinguts de la simulació amb valors experimentals.
Resumo:
Conductive elastic materials are formed by distributing conductive particles within an elastic polymer. We consider a novel composite based on dendritic nickel particles that exhibit remarkably strong negative piezoresistivity with an increase in conductivity of up to 10 orders of magnitude with strains of the order of 0.2. A vital factor for the conductivity of conductive elastomers is the concentration of conductive fillers and many aspects can be understood in terms of percolation theory. In this system the concentration of particles within the composite does not change with strain, yet due to the shape of the particles, the concentration of electrical contacts between the particles does change. We have developed a new model based on the concentration of contact sites, rather than particles which enables us to successfully model this remarkable strain-dependence of conductivity.
Resumo:
Rubber composites containing multiwalled carbon nanotubes have been irradiated with near-infrared light to study their reversible photomechanical actuation response. We demonstrate that the actuation is reproducible across differing polymer systems. The response is directly related to the degree of uniaxial alignment of the nanotubes in the matrix, contracting the samples along the alignment axis. The actuation stroke depends on the specific polymer being tested; however, the general response is universal for all composites tested. We conduct a detailed study of tube alignment induced by stress and propose a model for the reversible actuation behavior based on the orientational averaging of the local response. The single phenomenological parameter of this model describes the response of an individual tube to adsorption of low-energy photons; its experimentally determined value may suggest some ideas about such a response.
Resumo:
Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.
Resumo:
We report on a distributed moisture detection scheme which uses a cable design based on waterswellable hydrogel polymers. The cable modulates the loss characteristic of light guided within a multi-mode optical fibre in response to relative water potentials in the surrounding environment. Interrogation of the cable using conventional optical time-domain reflectometry (OTDR) instruments allows water ingress points to be identified and located with a spatial resolution of 50 cm. The system has been tested in a simulated tendon duct grouting experiment as a means of mapping the extent of fill along the duct during the grouting process. Voided regions were detected and identified to within 50 cm. A series of salt solutions has been used to determine the sensor behaviour over a range of water potentials. These experiments predict that measurements of soil moisture content can be made over the range 0 to – 1500 kPa. Preliminary data on soil measurements have shown that the sensor can detect water pressure changes with a resolution of 45 kPa. Applications for the sensor include quality assurance of grouting procedures, verification of waterproofing barriers and soil moisture content determination (for load-bearing calculations).
Resumo:
The paper provides a descriptive analysis of the carbon management activities of the cement industry in Europe based on a study involving the four largest producers of cement in the world. Based on this analysis, the paper explores the relationship between managerial perception and strategy with particular focus on the impact of government regulation and competitive dynamics. The research is based on extensive documentary analysis and in-depth interviews with senior managers from the four companies who have been responsible for and/or involved in the development of climate change strategies. We find that whilst the cement industry has embraced climate change and the need for action, their remains much scope for action in their carbon management activities with current effort concentration on hedging practices and win-win efficiency programs. Managers perceive that inadequate and unfavourable regulatory structure is the key barrier against more action to achieve emission reduction within the industry. EU Cement companies are also shifting their CO2 emissions to less developed countries of the South.
Resumo:
To analyze patterns in marine productivity, harmful algal blooms, thermal stress in coral reefs, and oceanographic processes, optical and biophysical marine parameters, such as sea surface temperature, and ocean color products, such as chlorophyll-a concentration, diffuse attenuation coefficient, total suspended matter concentration, chlorophyll fluorescence line height, and remote sensing reflectance, are required. In this paper we present a novel automatic Satellite-based Ocean Monitoring System (SATMO) developed to provide, in near real-time, continuous spatial data sets of the above-mentioned variables for marine-coastal ecosystems in the Gulf of Mexico, northeastern Pacific Ocean, and western Caribbean Sea, with 1 km spatial resolution. The products are obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) images received at the Direct Readout Ground Station (located at CONABIO) after each overpass of the Aqua and Terra satellites. In addition, at the end of each week and month the system provides composite images for several ocean products, as well as weekly and monthly anomaly composites for chlorophyll-a concentration and sea surface temperature. These anomaly data are reported for the first time for the study region and represent valuable information for analyzing time series of ocean color data for the study of coastal and marine ecosystems in Mexico, Central America, and the western Caribbean.
Resumo:
Purpose: The aim of the study was to assess the in vitro bond strength (BS) of glass fiber posts (GF) and carbon fiber posts (CF) in the cervical, middle, and apical thirds of root canals cemented with RelyX-Unicem (RX) and Cement-Post (CP). Materials and Methods: Forty maxillary canines were divided into 4 groups (n = 10) according to the cement and post used: group 1: GF and RX; group 2: CF and RX; group 3: GF and CP; group 4: CF and CP. The push-out test was applied in the cervical, middle and apical thirds of each specimen to assess bond strength of the cement/post complex to the root canal wall. The data obtained were submitted to ANOVA (Bonferroni test, p < 0.05), and fracture analysis was done with SEM. Results: The GF posts presented the best results when cemented with RX and with CF (p < 0.05). RX presented the highest BS values for both GF and CF (p < 0.05). For all the groups, BS was higher in the cervical third, followed by the middle and apical thirds. Fracture analysis showed a predominance of cohesive fracture of posts for RX, and a predominance of adhesive fracture between dentin/cement, and mixed failure mode for CP. Conclusion: GF posts cemented with RX presented the highest BS values in all root thirds.
Resumo:
The burning of organic residues and wastes in furnaces of cement industries has been an attractive and lucrative approach to eliminate stocks of these pollutants. There is a potential risk for producing PAH in the workplace of industries burning organic wastes, so that highly sensitive analytical methods are needed for monitoring the air quality of these environments. An official method for determination of PAH is based on liquid chromatography with fluorescence detection at fixed excitation and emission wavelengths. We demonstrate that a suitable choice of these wavelengths, which are changed during the chromatographic run, significantly improves the detectability of PAH in atmosphere and particulate matter collected in cement industries.
Resumo:
Tannin-phenolic polymers prepared using tannin, a macromolecule obtained from natural sources, were used in the preparation of composites reinforced with coir fibers. The composites based on tannin-phenolic polymers (50% (w/w) of tannin as substitute of the phenol) were prepared using the coir fibers as reinforcement (30-70% (w/w), 3.0-6.0 cm, randomly distributed). The Izod impact strength of the composites showed an improvement in this property due to the incorporation of coir fibers in the tannin-phenolic matrices. The SEM images showed excellent adhesion at the fiber/matrix interface. The coir fiber had bundles regularly spaced, which enhanced the diffusion of the resin into the fiber. In addition, the high lignin content of this fiber results in a high concentration of aromatic rings, which increased the compatibility with the matrix. The values of the diffusion coefficient of water, determined using Fick`s laws, show that there was no correlation between the fiber percentage and the water diffusion. The DMTA curves showed that the storage moduli of the composites reinforced with coir fibers were considerably higher than that of the thermoset, and the increase in the proportion of fibers led to a proportional increase in the storage moduli of these materials. The biobased composites obtained have potential for non-structural applications, such as in the internal parts of automotives vehicles. To our knowledge, this is the first study on this kind of biobased composites. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Leaf fibers are fibers that run lengthwise through the leaves of most monocotyledonous plants such as pineapple, banana, etc. Pineapple (Ananas comosus) and Banana (Musa indica) are emerging fiber having a very large potential to be used for composite materials. Over 150,000 ha of pineapple and over 100,000 ha of banana plantations are available in Brazil for the fruit production and enormous amount of agricultural waste is produced. This residual waste represents one of the single largest sources of cellulose fibers available at almost no cost. The potential consumers for this fiber are pulp and paper, chemical feedstock, textiles and composites for the automotive, furniture and civil construction industry.
Resumo:
Cellulose macro- and nanofibers have gained increasing attention due to the high strength and stiffness, biodegradability and renewability, and their production and application in development of composites. Application of cellulose nanofibers for the development of composites is a relatively new research area. Cellulose macro- and nanofibers can be used as reinforcement in composite materials because of enhanced mechanical, thermal, and biodegradation properties of composites. Cellulose fibers are hydrophilic in nature, so it becomes necessary to increase their surface roughness for the development of composites with enhanced properties. In the present paper, we have reviewed the surface modification of cellulose fibers by various methods. Processing methods, properties, and various applications of nanocellulose and cellulosic composites are also discussed in this paper.