950 resultados para Cement industries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past 30 years, developed economies' approaches to supporting growth have focused on competitiveness, entrepreneurship and innovation to varying degrees. However, following the credit crisis and global recession in 2008 there has been demand for an updated narrative of growth based on the emergence of new industries. This paper provides a brief review of the available literature on how governments in leading economies can support new industries to emerge to the benefit of their national economy, discusses a number of issues for governments trying to support emerging industries, provides a framework of activities which governments considering this type of intervention should consider, and discusses the case of the regenerative medicine industry in the UK using the framework. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA=1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500kPa and hydraulic conductivity was around 10-8m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02-3500mg/kg for Cd, 0.35-1550mg/kg for Cu, 0.03-92mg/kg for Pb, 0.01-3300mg/kg for Ni, 0.02-4010mg/kg for Zn, and 7-4884mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plugging is well known to be a major cause of instability in industrial cement mills. A simple nonlinear model able to simulate the plugging phenomenon is presented. It is shown how a nonlinear robust controller can be designed in order to fully prevent the mill from plugging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cement-bentonite (CB) cutoff walls have long been used to control ground water flow and contaminant migration at polluted sites. Hydraulic conductivity and unconfined compressive strength are two short-term properties often used by industry and owners in CB specification and are important parameters discussed in this paper. For polluted sites, long-term compatibility is also an important issue. These properties are coupled to a number of external factors including the mix design, construction sequence, presence/absence of contaminants at the site. Additional short-term properties for engineering assessment include the stressstrain characteristics in both drained and undrained shear in both with and without confinement as well as one-dimensional consolidation properties. Long term CB properties are affected by aging, reaction chemistry, drying, in situ stress state, and interaction with the polluted environment. © 2013 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents ongoing work on data collection and collation from a large number of laboratory cement-stabilization projects worldwide. The aim is to employ Artificial Neural Networks (ANN) to establish relationships between variables, which define the properties of cement-stabilized soils, and the two parameters determined by the Unconfined Compression Test, the Unconfined Compressive Strength (UCS), and stiffness, using E50 calculated from UCS results. Bayesian predictive neural network models are developed to predict the UCS values of cement-stabilized inorganic clays/silts, as well as sands as a function of selected soil mix variables, such as grain size distribution, water content, cement content and curing time. A model which can predict the stiffness values of cement-stabilized clays/silts is also developed and compared to the UCS model. The UCS model results emulate known trends better and provide more accurate estimates than the results from the E50 stiffness model. © 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factors that affect the engineering properties of cement stabilized soils such as strength are discussed in this paper using data on these factors. The selected factors studied in this paper are initial soil water content, grain size distribution, organic matter content, binder dosage, age and curing temperature, which has been collated from a number of international deep mixing projects. Some resulting correlations from this data are discussed and presented. The concept of Artificial Neural Networks and its applicability in developing predictive models for deep mixed soils is presented and discussed using a subset of the collated data. The results from the neural network model were found to emulate the known trends and reasonable estimates of strength as a function of the selected variables were obtained. © 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the effect of thermal cycles on the fracture properties of the cement-based bi-materials. Sixty eight cubes were exposed to a varied number of 24-hour thermal cycles ranging from 0 to 90 and subsequently were tested in a wedge splitting configuration. The mechanical and fracture properties of normal strength and high strength concretes are substantially improved after 30 thermal cycles, but less so after 90 thermal cycles both in isolation and when bonded to an ultra high-performance fibre-reinforced cement-based composite. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniquely, China employs MgO already contained in cement clinker or as an expansive additive to compensate for the thermal shrinkage of mass concrete, particularly dam concrete, with almost 40 years' experience in both research activities and industrial applications. Compensating shrinkage with expansion produced by MgO has been proved to effectively prevent thermal cracking of mass concrete, and reduce the cost of temperature control measures and speed up the construction process. Moreover, the expansion properties of MgO could be designed flexibly, through adjusting its microstructure by changing the calcination conditions (calcining temperature and residence time). The collective knowledge and experience of MgO expansive cement and concrete is worthy of sharing with relevant engineers and researchers globally but dissemination has been hindered as most of the relevant literature is published in Chinese. This paper reviews the history, state-of-the-art progress and future research needs in the field of MgO expansive cement and concrete. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of reactive magnesia (MgO) as the binder in porous blocks demonstrated significant advantages due to its low production temperatures and ability to carbonate, leading to significant strengths. This paper investigates the enhancement of the carbonation process through different curing conditions: water to cement ratio (0.6-0.9), CO2 concentration (5-20%), curing duration (1-7 days), relative humidity (55-98%), and wet/dry cycling frequency (every 0-3 days), improving the carbonation potential through increased amounts of CO2 absorbed and enhanced mechanical performance. UCS results were supported with SEM, XRD, and HCl acid digestion analyses. The results show that CO2 concentrations as low as 5% can produce the required strengths after only 1 day. Drier mixes perform better in shorter curing durations, whereas larger w/c ratios are needed for continuous carbonation. Mixes subjected to 78% RH outperformed all the others, also highlighting the benefits of incorporating wet/dry cycling to induce carbonation. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of comparisons and correlations between the unconfined compressive strength (UCS) and the undrained triaxial compressive strength, qu, is essential for generalising performance and optimising the design of cement-stabilised soils. This paper introduces current work in collecting and collating data from a number of research projects involving both laboratory strength tests performed on identical cement-stabilised soil samples. The research project on cement-stabilised Singapore marine clays at the National University of Singapore has been used as an example to explain the work on comparing and correlating results from both tests by normalising data and constructing contour plots. The effect of variables on strength comparison and correlations was evaluated. The variation in strength correlations was found to be dependent on a number of factors including: soil properties, cement content, curing time and stress, total water/cement ratio, confining stress and strain rate. The results showed that at ~ 100 kPa confining stress, UCS and qu, had similar magnitudes. Correlations between strengths and other design variables are discussed and presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The labilities of thorium fractions including mobility and bioavailability vary significantly with soil properties. The effects of soil pH and soil organic matter on the distribution and transfer of thorium fractions defined by a sequential extraction procedure were investigated. Decrease of soil pH could enhance the phytoavailability and the potential availability of thorium in soil. Increase of organic matter reduced the phytoavailability of thorium, but enhanced the potential availability of it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption behavior of exogenous thorium on soil was studied to evaluate the contaminated risk on soil. The adsorption capacity, equilibrium time, distribution coefficient and desorption ability were investigated by the experiments of static adsorption. The strong adsorption ability of exogenous thorium on soil samples was observed by high adsorption ratio (> 92%) and low desorption ratio (< 5%) in equilibrium, and the biggest distribution coefficient was over 10(4). The adsorption capacity and equilibrium time were related to soil properties. According to the results of adsorption, Freundlich equation (r >= 0.916 7) and Elovich equation (R-2 >= 0. 898 0) were primely fit for describing the thermodynamics and kinetics of the adsorption of exogenous thorium on soil samples, respectively, which indicated that the adsorption was belonged to the nonlinear adsorption, and was affected by the diffusion of thorium on soil surface and in mineral interbed. Sequential extraction procedure was employed to evaluate the bound fractions of exogenous thorium adsorbed on soil samples.