852 resultados para Cell-mediated Immune Response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Severe brain trauma leads to an activation of the immune system. To this date, neither the exact perturbation of the specific immune reaction induced by the traumatic brain injury (TBI), nor the interactions leading to the infiltration of peripheral immune cells into the brain are fully understood. PATIENTS AND METHODS: Serum was collected from 17 patients with TBI and a long bone fracture, 24 patients with an isolated long bone fracture and from healthy individuals. The effect of the serum on normal human monocytes and T-lymphocytes was tested in vitro by assessing proliferation and expression of surface markers, chemokine receptors and cytokines. RESULTS: Serum collected from patients with a TBI and a long bone fracture increased the expression of the chemokine receptor CCR4 in monocytes when compared to patients with an isolated long bone fracture. Extending this comparison to T-lymphocytes, the serum from TBI patients induced lower proliferation rates and decreased expression of the pro-inflammatory cytokine TNF-alpha, while simultaneously increasing the secretion of immune-modulatory cytokines (IL-4, IL-10 and TGF-beta) (p<0.05). CONCLUSION: Patients with a TBI release currently unknown soluble factors into the circulating blood that up regulate expression of chemokine receptor CCR4 in peripheral blood monocytes whilst concurrently inducing expression of immunosuppressive cytokines by activated T-lymphocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Botulinum neurotoxins, predominantly serotypes C and D, cause equine botulism through forage poisoning. The C-terminal part of the heavy chain of botulinum neurotoxin types C and D (HcBoNT/C and D) was expressed in Escherichia coli and evaluated as a recombinant mono- and bivalent vaccine in twelve horses in comparison to a commercially available toxoid vaccine. A three-dose subcutaneous immunization of adult horses elicited robust serum antibody response in an ELISA using the immunogen as a capture antigen. Immune sera showed dose-dependent high potency in neutralizing specifically the active BoNT/C and D in the mouse protection assay. The aluminium hydroxide based mono- and bivalent recombinant HcBoNT/C and D vaccines were characterized by good compatibility and the ability to elicit protective antibody titers similar or superior to the commercially available toxoid vaccine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments using different types of antigen-adjuvant preparations were conducted in outbred sheep to compare effects of adjuvants on immune responses. Trinitrophenyl-ovalbumin (TNP-ovalbumin) incorporated in a preparation with nonionic block copolymers elicited high antibody titers to both ovalbumin and TNP. Different humoral immune responses were observed when Pasteurella haemolytica lipopolysaccharide (LPS) was added to the preparations. Responses to ovalbumin and TNP were reduced when Pasteurella haemolytica LPS was added to copolymer L121. The antibody titers to ovalbumin or TNP were not affected by the addition of LPS to the preparation containing copolymer L180.5. Lymphocyte proliferation assays demonstrated high stimulation indices at day 17 to ovalbumin by lymphocytes from lambs receiving preparations containing copolymers without Pasteurella haemolytica LPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past several years, an ovine coughing syndrome characterized by paroxysmal cough leading to rectal prolapses has been observed in Iowa and neighboring states. Preliminary studies conducted by Kaeberle and Eness (1) several years ago indicated the presence of relatively high levels of M. ovipneumoniae (MO) antibody in lambs from affected flocks. In the present study, serum samples obtained from six flocks around the state of Iowa, at various stages of the clinical disease, were compared by ELISA for antibody to MO and M. arginini (MA). Results indicated low antibody levels to MO in flocks sampled at the early stages of infection whereas increased levels of antibody were evident in lambs from flocks that had apparently recovered from the disease. On the other hand, antibody levels to MA were more likely to increase earlier in the disease process. Our results suggest that the chronic nature of this disease may result from the failure of the immune system to produce antibodies that are protective against MO infection. At such a time that appreciable levels of specific antibodies appear in the serum (several weeks following infection) lambs seem to recover from the clinical disease. In addition, this lack of circulating antibody levels against MO would not be inconsistent with a predominant IgE response during early stages of the clinical disease as we have suggested in another entry in this issue of Sheep Research Reports.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rubella virus (RV) typically causes a mild childhood illness, but complications can result from both viral and immune-mediated pathogenesis. RV can persist in the presence of neutralizing antibodies, suggesting that cell-mediated immune responses may be necessary for viral clearance. However, the molecular determinants recognized by RV-specific T-cells have not been identified. Using recombinant proteins which express the entire RV structural open reading frame in proliferation assays with lymphocytes of RV-immune individuals, domains which elicit major histocompatibility complex class II-restricted helper T-cells were identified. Synthetic peptides representing these domains were used to define specific epitopes. Two immunodominant domains were mapped to the capsid protein sequence C$\sb1$-C$\sb{29}$ and the E1 glycoprotein sequence E1$\sb{202}$-E1$\sb{283}.$ RV-specific MHC class I-restricted cytotoxic T lymphocytes (CTLs) were identified using a chromium-release assay with infected fibroblasts as target cells. An infectious Sindbis virus vector expressing each of the RV structural proteins identified the capsid, E2 and E1 proteins as targets of CTLs. Specific CTL epitopes were mapped within the previously identified immunodominant domains. This study identified domains of the RV structural proteins that may be beneficial for development of a synthetic vaccine, and provides normative data on RV-specific T-cell responses that should enhance our ability to understand RV persistence and associated complications. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of mice with the immunomodulating agent, Corynebacterium parvum (C. parvum), was shown to result in a severe and long-lasting depression of splenic natural killer (NK) cell-mediated cytotoxicity 5-21 days post-inoculation. Because NK cells have been implicated in immunosurveillance against malignancy (due to their spontaneous occurrence and rapid reactivity to a variety of histological types of tumors), as well as in resistance to established tumors, this decreased activity was of particular concern, since this effect is contrary to that which would be considered therapeutically desirable in cancer treatment (i.e. a potentiation of antitumor effector functions, including NK cell activity, would be expected to lead to a more effective destruction of malignant cells). Therefore, an analysis of the mechanism of this decline of splenic NK cell activity in C.parvum treated mice was undertaken.^ From in vitro co-culturing experiments, it was found that low NK-responsive C. parvum splenocytes were capable of reducing the normally high-reactivity of cells from untreated syngeneic mice to YAC-1 lymphoma, suggesting the presence of NK-directed suppressor cells in C. parvum treated animals. This was further supported by the demonstration of normal levels of cytotoxicity in C. parvum splenocyte preparations following Ficoll-Hypaque separation, which coincided with removal of the NK-suppressive capabilities of these cells. The T cell nature of these regulatory cells was indicated by (1) the failure of C. parvum to cause a reduction of NK cell activity, or the generation of NK-directed suppressor cells in T cell-deficient athymic mice, (2) the removal of C. parvum-induced suppression by T cell-depleting fractionation procedures or treatments, and (3) demonstration of suppression of NK cell activity by T cell-enriched C. parvum splenocytes. These studies suggest, therefore, that the eventual reduction of suppression by T cell elimination and/or inhibition, may result in a promotion of the antitumor effectiveness of C. parvum due to the contribution of "freed" NK effector cell activity.^ However, the temporary suppression of NK cell activity induced by C. parvum (reactivity of treated mice returns to normal levels within 28 days after C. parvum injection), may in fact be favorable in some situations, e.g. in bone marrow transplantation cases, since NK cells have been suggested to play a role also in the process of bone marrow graft rejection.^ Therefore, the discriminate use of agents such as C. parvum may allow for the controlled regulation of NK cell activity suggested to be necessary for the optimalization of therapeutic regimens. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X‐linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti‐apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase‐mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP‐mediated immune response by inducing the BID‐dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain‐dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MASP-1 is a versatile serine protease that cleaves a number of substrates in human blood. In recent years it became evident that besides playing a crucial role in complement activation MASP-1 also triggers other cascade systems and even cells to mount a more powerful innate immune response. In this review we summarize the latest discoveries about the diverse functions of this multi-faceted protease. Recent studies revealed that among MBL-associated serine proteases, MASP-1 is the one responsible for triggering the lectin pathway via its ability to rapidly autoactivate then cleave MASP-2, and possibly MASP-3. The crystal structure of MASP-1 explains its more relaxed substrate specificity compared to the related complement enzymes. Due to the relaxed specificity, MASP-1 interacts with the coagulation cascade and the kinin generating system, and it can also activate endothelial cells eliciting pro-inflammatory signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explored the host-pathogen interactions of the human opportunistic fungus Candida albicans using Drosophila melanogaster. We established that a Drosophila strain devoid of functional Toll receptor is highly susceptible to the human pathogen C. albicans. Using this sensitive strain, we have been able to show that a set of specific C. albicans mutants of different virulence in mammalian infection models are also impaired in virulence in Drosophila and remarkably display the same rank order of virulence. This immunodeficient insect model also revealed virulence properties undetected in an immunocompetent murine model of infection. The genetic systems available in both host and pathogen will enable the identification of host-specific components and C. albicans genes involved in the host-fungal interplay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spirochete Borrelia burgdorferi (Bb) is the causative agent of Lyme disease. During infection, a strong immune response is elicited towards Bb by its host; however, the organism is able to persist and to disseminate to many different tissues. The vls locus is located on the linear plasmid lp28-1, a plasmid shown to be important for virulence in the mouse model. During infection, vlsE undergoes antigenic variation through a series of gene conversions, which results in the insertion of sequences from the silent, unexpressed cassettes into the vlsE cassette. We hypothesize that this antigenic variation is important in the spirochete's ability to persist within mammals by allowing it to evade the immune system. To define the role of vls in immune evasion, the immune response against VlsE was determined by using a recombinant form of VlsE (VlsE1-His) as an antigen to screen patient sera. Lyme patients produce antibodies that recognize VlsE, and these antibodies are present throughout the course of disease. Immunization with the VlsE1-His protein provided protection against infection with Bb expressing the same variant of VlsE (VlsE1), but was only partially protective when mice were infected with organisms expressing VlsE variants; however, subsequent VlsE immunization studies yielded inconsistent protection. Successful immunizations produced different antibody reactivities to VlsE epitopes than non-protective immunizations, but the reason for this variable response is unclear. In the process of developing genetic approaches to transform infectious Bb, it was determined that the transformation barrier posed by plasmids lp25 and lp56 could be circumvented by replacing the required lp25 gene pncA. To characterize the role of vlsE in infectivity, Bb lacking lp28-1 were complemented with a shuttle plasmid containing the lp25 encoded virulence determinant pncA and vlsE. Complemented spirochetes express VlsE, but the gene does not undergo antigenic variation and infectivity in the mouse model was not restored, indicating that either antigenic variation of vlsE is necessary for survival in the mouse model or that other genes on lp28-1 are important for virulence. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the availability of hepatitis B vaccine for over two decades, drug users and other high-risk adult populations have experienced low vaccine coverage. Poor compliance has limited efforts to reduce transmission of hepatitis B infection in this population. Evidence suggests that immunological response in drug users is impaired compared to the general population, both in terms of lower seroprotection rates and antibodies levels.^ The current study investigated the effectiveness of the multi-dose hepatitis B vaccine and compared the effect of the standard and accelerated vaccine schedules in a not-in-treatment, drug-using adult population in the city of Houston, USA.^ A population of drug-users from two communities in Houston, susceptible to hepatitis B, was sampled by outreach workers and referral methodology. Subjects were randomized either to the standard hepatitis vaccine schedule (0, 1-, 6-month) or to an accelerated schedule (0, 1-, 2-month). Antibody levels were detected through laboratory analyses at various time-points. The participants were followed for two years and seroconversion rates were calculated to determine immune response.^ A four percent difference in the overall compliance rate was observed between the standard (73%) and accelerated schedules (77%). Logistic regression analyses showed that drug users living on the streets were twice as likely to not complete all three vaccine doses (p=0.028), and current speedball use was also associated with non-completion (p=0.002). Completion of all three vaccinations in the multivariate analysis was also correlated with older age. Drug users on the accelerated schedule were 26% more likely to achieve completion, although this factor was marginally significant (p=0.085).^ Cumulative adequate protective response was gained by 65% of the HBV susceptible subgroup by 12-months and was identical for both the standard and accelerated schedules. Excess protective response (>=100 mIU/mL) occurred with greater frequency at the later period for the standard schedule (36% at 12-months compared to 14% at six months), while the greater proportion of excess protective response for the accelerated schedule occurred earlier (34% at 6 months compared to 18% at 12-months). Seroconversion at the adequate protective response level of 10 mIU/mL was reached by the accelerated schedule group at a quicker rate (62% vs. 49%), and with a higher mean titer (104.8 vs. 64.3 mIU/mL), when measured at six months. Multivariate analyses indicated a 63% increased risk of non-response for older age and confirmed the existence of an accelerating decline in immune response to vaccination manifesting after 40 years (p=0.001). Injecting more than daily was also highly associated with the risk of non-response (p=0.016).^ The substantial increase in the seroprotection rate at six months may be worth the trade-off against the faster antibody titer decrease and is recommended for enhancing compliance and seroconversion. Utilization of the accelerated schedule with the primary objective of increasing compliance and seroconversion rates during the six months after the first dose may confer early protective immunity and reduce the HBV vulnerability of drug users who continue, or have recently initiated, increased high risk drug use and sexual behaviors.^