934 resultados para Cancer Research
Resumo:
Glioblastoma multiforme ( GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high- density oligonucleotide arrays, and performed gene expression analyses using next- generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 ( IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.
Resumo:
Background: Sequence variants located at 15q25 have been associated with lung cancer and propensity to smoke. We recently reported an association between rs16969968 and risk of upper aerodigestive tract (UADT) cancers (oral cavity, oropharynx, hypopharynx, larynx, and esophagus) in women (OR = 1.24, P = 0.003) with little effect in men (OR = 1.04, P = 0.35). Methods: In a coordinated genotyping study within the International Head and Neck Cancer Epidemiology (INHANCE) consortium, we have sought to replicate these findings in an additional 4,604 cases and 6,239 controls from 10 independent UADT cancer case-control studies. Results: rs16969968 was again associated with UADT cancers in women (OR = 1.21, 95% CI = 1.08-1.36, P = 0.001) and a similar lack of observed effect in men [OR = 1.02, 95% CI = 0.95-1.09, P = 0.66; P-heterogeneity (P(het)) = 0.01]. In a pooled analysis of the original and current studies, totaling 8,572 UADT cancer cases and 11,558 controls, the association was observed among females (OR = 1.22, 95% CI = 1.12-1.34, P = 7 x 10(-6)) but not males (OR = 1.02, 95% CI = 0.97-1.08, P = 0.35; P(het) = 6 x 10(-4)). There was little evidence for a sex difference in the association between this variant and cigarettes smoked per day, with male and female rs16969968 variant carriers smoking approximately the same amount more in the 11,991 ever smokers in the pooled analysis of the 14 studies (P(het) = 0.86). Conclusions: This study has confirmed a sex difference in the association between the 15q25 variant rs16969968 and UADT cancers. Impact: Further research is warranted to elucidate the mechanisms underlying these observations. Cancer Epidemiol Biomarkers Prev; 20(4); 658-64. (C) 2011 AACR.
Resumo:
Annexin A1 (ANXA1) is a soluble cytoplasmic protein, moving to membranes when calcium levels are elevated. ANXA1 has also been shown to move to the nucleus or outside the cells, depending on tyrosine-kinase signalling, thus interfering in cytoskeletal organization and cell differentiation, mostly in inflammatory and neoplastic processes. The aim was to investigate subcellular patterns of immunohistochemical expression of ANXA1 in neoplastic and non-neoplastic samples from patients with laryngeal squamous cell carcinomas (LSCC), to elucidate the role of ANXA1 in laryngeal carcinogenesis. Serial analysis of gene expression experiments detected reduced expression of ANXA1 gene in LSCC compared with the corresponding non-neoplastic margins. Quantitative polymerase chain reaction confirmed ANXA1 low expression in 15 LSCC and eight matched normal samples. Thus, we investigated subcellular patterns of immunohistochemical expression of ANXA1 in 241 paraffin-embedded samples from 95 patients with LSCC. The results showed ANXA1 down-regulation in dysplastic, tumourous and metastatic lesions and provided evidence for the progressive migration of ANXA1 from the nucleus towards the membrane during laryngeal tumorigenesis. ANXA1 dysregulation was observed early in laryngeal carcinogenesis, in intra-epithelial neoplasms; it was not found related to prognostic parameters, such as nodal metastases.
Resumo:
Epidermal growth factor receptor (EGFR) gene overexpression has been implicated in the development of many types of tumors, including glioblastomas, the most frequent diffusely infiltrating astrocytomas. However, little is known about the influence of the polymorphisms of EGFR on EGFR production and/or activity, possibly modulating the susceptibility to astrocytomas. This study aimed to examine the association of two EGFR promoter polymorphisms (c.-191C > A and c.-216G > T) and the c.2073A > T polymorphism located in exon 16 with susceptibility to astrocytomas, EGFR gene expression and survival in a case-control study of 193 astrocytoma patients and 200 cancer-free controls. We found that the variant TT genotype of the EGFR c.2073A > T polymorphism was associated with a significantly decreased risk of astrocytoma when compared with the AA genotype [sex- and age-adjusted odds ratio 0.51, 95% confidence interval 0.26-0.98]. No association of the two promoter EGFR polymorphisms (or combinations of these polymorphisms) and risk of astrocytomas, EGFR expression or survival was found. Our findings suggest that modulation of the EGFR c.2073A > T polymorphism could play a role in future therapeutic approaches to astrocytoma. (Int J Biol Markers 2008; 23: 140-6)
Resumo:
Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein-protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation.
Resumo:
Proteomic approaches have been useful for the identification of aberrantly expressed proteins in complex diseases such as cancer. These proteins are not only potential disease biomarkers, but also targets for therapy. The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS. Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes. Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p < 0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p < 0.05). We report here for the first time the alteration of NPM and RKIP expression in brain cancer. Our focus on these proteins was due to the fact that they are involved in the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways, known for their contribution to the development and progression of gliomas. The proteomic data for NPM and RKIP were confirmed by Western blot, quantitative real-time PCR and immunohistochemistry. Due to the participation of NPM and RKIP in uncontrolled proliferation and evasion of apoptosis, these proteins are likely targets for drug development.
Resumo:
Glioblastoma is the most frequent and malignant brain tumor, characterized by an elevated capacity for cellular proliferation and invasion. Recently, it was demonstrated that podoplanin membrane sialo-glycoprotein encoded by PDPN gene is over-expressed and related to cellular invasion in astrocytic tumors; however the mechanisms of regulation are still unknown. MicroRNAs are noncoding RNAs that regulate gene expression and several biological processes and diseases, including cancer. Nevertheless, their roles in invasion, proliferation, and apoptosis of glioblastoma are not completely understood. In this study, we focused on miR-29b and miR-125a, which were predicted to regulate PDPN, and demonstrated that these microRNAs directly target the 30 untranslated region of PDPN and inhibit invasion, apoptosis, and proliferation of glioblastomas. Furthermore, we report that miR-29b and miR-125a are downregulated in glioblastomas and also in CD133-positive cells. Taken together, these results suggest that miR-29b and miR-125a represent potential therapeutic targets in glioblastoma. (C) 2010 Wiley-Liss, Inc.
Resumo:
This study sought to use a microdialysis technique to relate clinical and biochemical responses to the time course of melphalan concentrations in the subcutaneous interstitial space and in tumour tissue (melanoma, malignant fibrous histiocytoma, Merkel cell tumour and osteosarcoma) in patients undergoing regional chemotherapy by Isolated Limb Infusion (ILI). 19 patients undergoing ILI for treatment of various limb malignancies were monitored for intra-operative melphalan concentrations in plasma and, using microdialysis, in subcutaneous and tumour tissues. Peak and mean concentrations of melphalan were significantly higher in plasma than in subcutaneous or tumour microdialysate. There was no significant difference between drug peak and mean concentrations in interstitial and tumour tissue, indicating that there was no preferential uptake of melphalan into the tumours. The time course of melphalan in the microdialysate could be described by a pharmacokinetic model which assumed melphalan distributed from the plasma into the interstitial space. The model also accounted for the vascular dispersion of melphalan in the limb. Tumour response in the whole group to treatment was partial response: 53.8% (n = 7); complete response: 33.3% (n = 5); no responses 6.7% (n = 1). There was a significant association between tumour response and melphalan concentrations measured over time in subcutaneous microdialysate (P < 0.01). No significant relationship existed between the severity of toxic reactions in the limb or peak plasma creatine phosphokinase levels and peak melphalan microdialysate or plasma concentrations. It is concluded that microdialysis is a technique well suited for measuring concentrations of cytotoxic drug during ILI. The possibility of predicting actual concentrations of cytotoxic drug in the limb during ILI using our model opens an opportunity for improved drug dose calculation. The combination of predicting tissue concentrations and monitoring in microdialysate of subcutaneous tissue could help optimise ILI with regard to post-operative limb morbidity and tumour response. (C) 2001 Cancer Research Campaign http:,//www.bjcancer.com.
Resumo:
Cytogenetic and loss of heterozygosity (LOH) studies have long indicated the presence of a tumor suppressor gene (TSG) on 90 involved in the development of melanoma, Although LOH at 90 has been reported in approximately 60% of melanoma tumors, only 5-10% of these tumors have been shown to carry CDKN2A mutations, raising the possibility that another TSG involved in melanoma maps to chromosome 90. To investigate this possibility, a panel of 37 melanomas derived from 35 individuals was analyzed for CDKN2A mutations hy single-strand conformation polymorphism analysis and sequencing. The melanoma samples were then typed for 15 markers that map to 9p13-24 to investigate LOH trends in this region. In those tumors demonstrating retention of heterozygosity at markers flanking CDKN2A and LOH on one or both sides of the gene, multiplex microsatellite PCR was performed to rule out homozygous deletion of the region encompassing CDKN2A. CDKN2A mutations were found in tumors from 5 patients [5 (14%) of 35], 4 of which demonstrated LOH across the entire region examined. The remaining tumor with no observed LOH carried two point mutations, one on each allele, Although LOH was identified at one or more markers in 22 (59%) of 37 melanoma tumors corresponding to 20 (57%) of 35 individuals, only 11 tumors from 9 individuals [9 (26%) of 35] demonstrated LOH at D9S942 and D9S1748, the markers closest to CDKN2A. Of the remaining 11 tumors with LOH, 9 demonstrated LOH at two or more contiguous markers either centromeric and/or telomeric to CDKN2A while retaining heterozygosity at several markers adjacent to CDKN2A. Multiplex PCR revealed one tumor carried a homozygous deletion extending from D9S1748 to the IFN-alpha locus. In the remaining eight tumors, multiplex PCR demonstrated that the observed heterozygosity was not attributable to homozygous deletion and stromal contamination at D9S1748, D9S942, or D9S974, as measured by comparative amplification strengths, which indicates that retention of heterozygosity with flanking LOH does not always indicate a homozygous deletion, This report supports the conclusions of previous studies that at least two TSGs involved in melanoma development in addition to CDKN2A may reside on chromosome 9p.
Resumo:
ATM, the gene mutated in the human immunodeficiency disorder ataxia-telangiectasia (A-T), plays a central role in recognizing ionizing radiation damage in DNA and in controlling several cell cycle checkpoints. We describe here a murine model in which a nine-nucleotide in-frame deletion has been introduced into the Atm gene by homologous recombination followed by removal of the selectable marker cassette by Cre-loxP site-specific, recombination-mediated excision. This mouse, Abm-Delta SRI, was designed as a model of one of the most common deletion mutations (7636de19) found in A-T patients. The murine Atm deletion results in the loss of three amino acid residues (SRI; 2556-2558) but produces near full-length detectable Atm protein that lacks protein kinase activity. Radiosensitivity was observed in Atm-Delta SRI mice, whereas the immunological profile of these mice showed greater heterogeneity of T-cell subsets than observed in Atm(-/-) mice. The life span of Atm-Delta SRI mice was significantly longer than that of Atm(-/-) mice when maintained under nonspecific pathogen-free conditions. This can be accounted for by a lower incidence of thymic lymphomas in Atm-Delta SRI mice up to 40 weeks, after which time the animals died of other causes. The thymic lymphomas in Atm-Delta SRI mice were characterized by extensive apoptosis, which appears to be attributable to an increased number of cells expressing Fas ligand. A variety of other tumors including B-cell lymphomas, sarcomas, and carcinomas not seen in Atm(-/-) mice were observed in older Atm-Delta SRI animals. Thus, expression of mutant protein in Atm-Delta SRI knock-in mice gives rise to a discernibly different phenotype to Atm(-/-) mice, which may account for the heterogeneity seen in A-T patients with different mutations.
Resumo:
Ovarian adenocarcinomas develop as the result of multiple genetic, and epigenetic changes in the precursor ovarian surface epithelial (OSE) cells which result in a malignant phenotype. We investigated changes in gene expression in ovarian adenocarcinoma using a cDNA array containing 588 known human genes. We found that intercellular adhesion molecule-1 (ICAM-1) was expressed at lower levels in the ovarian tumour cell lines OAW42, PEO1 and JAM than in the immortalised human ovarian surface epithelial cell line HOSE 17.1. Further investigation revealed ICAM-1 was expressed in the surface epithelium of normal ovaries and both mRNA and protein expression levels were reduced in the majority of ovarian adenocarcinoma cell lines and primary tumours. ICAM-1 expression was increased in 8/8 cell lines treated with the de novo methyltransferase inhibitor 5-aza-2'-deoxycytidiine, indicating that methylation of CpG islands may play a role in the down-regulation of its expression in primary tumours. 'There was a significant association between patients whose tumours expressed ICAM-1 and survival (P = 0.03), suggesting that expression levels of ICAM-1 may have clinical relevance. (C) 2001 Cancer Research Campaign.
Resumo:
Epithelial ovarian carcinoma is often diagnosed at an advanced stage of disease and is the leading cause of death from gynaecological neoplasia. The genetic changes that occur during the development of this carcinoma are poorly understood. It has been proposed that IGFIIR, TGF beta1 and TGF beta RII act as a functional unit in the TGF beta growth inhibitory pathway, and that somatic loss-of-function mutations in any one of these genes could lead to disruption of the pathway and subsequent loss of cell cycle control. We have examined these 3 genes in 25 epithelial ovarian carcinomas using single-stranded conformational polymorphism analysis and DNA sequence analysis. A total of 3 somatic missense mutations were found in the TGF beta RII gene, but none in IGFRII or TGF beta1. An association was found between TGF beta RII mutations and histology, with 2 out of 3 clear cell carcinomas having TGF beta RII mutations. This data supports other evidence from mutational analysis of the PTEN and beta -catenin genes that there are distinct developmental pathways responsible for the progression of different epithelial ovarian cancer histologic subtypes. (C) 2001 Cancer Research Campaign.
Resumo:
This study focuses on characterizing the genetic and biological alterations associated with squamous cell carcinoma development. Normal human epidermal keratinocytes (HEKs), cells isolated from a preneoplastic lesion (IEC-1), and two neoplastic cell lines, SCC-25 and COLD-16, were grown as raft cultures, and their gene expression profiles were screened using cDNA arrays. Our data indicated that the expression levels of at least 37 genes were significantly (P less than or equal to 0.05; 1.9% of genes screened) altered in neoplastic cells compared with normal cells. Of these genes, 10 genes were up-regulated and 27 genes were down-regulated in the neoplastic cells. In addition, 51% of the genes altered in the neoplastic cells were already altered in the preneoplastic IEC-1 cells. Immunohistochemical staining of patient tumors was used to verify the cDNA array analysis. Our analysis indicated that alterations in genes associated with extracellular matrix production and apoptosis are disrupted in preneoplastic cells, whereas later stages of neoplasia are associated with alterations in gene expression for genes involved in DNA repair or epidermal growth factor (EGF) receptor/mitogen-activated protein kinase kinase (MAPKK)/MAPK/activator protein-1 (AP-1) signaling. Subsequent functional analysis of the alterations in expression of the EGF receptor/MAPKK/MAPK/AP-1 genes suggested they did not contribute to the neoplastic phenotype.
Resumo:
The contribution of the UV component of sunlight to the development of skin cancer is widely acknowledged, although the molecular mechanisms that are disrupted by UV radiation (UVR) resulting in the loss of normal growth controls of the epidermal stem cell keratinocytes and melanocytes is still poorly understood. alpha-Melanocyte stimulating hormone (alpha-MSH), acting via its receptor MC1, has a key role in skin pigmentation and the melanizing response after exposure to UVR. The cell cycle inhibitor p16/CDKN2A also appears to have an important function in a cell cycle checkpoint response in skin after exposure to UVR. Both of these genes have been identified as risk factors in skin cancer, MC1R variants are associated with increased risk to both melanoma and nonmelanoma skin cancers, and p16/CDKN2A with increased risk of melanoma. Here we demonstrate that the increased expression of p16 after exposure to sub-erythemal doses of UVR is potentiated by alpha-MSH, a ligand for MC1R, and this effect is mimicked by cAMP, the intracellular mediator of alpha-MSH signaling via the MC1 receptor. This link between p16 and MC1R may provide a molecular basis for the increased skin cancer risk associated with MC1R polymorphisms.
Resumo:
Expression of the beta(3) integrin subunit in melanoma in situ has been found to correlate with tumor thickness, the ability to invade and metastasize, and poor prognosis. Transition from the radial growth phase (RGP) to the vertical growth phase (VGP) is a critical step in melanoma progression and survival and is distinguished by the expression of beta(3), integrin. The molecular pathways that operate in melanoma cells associated with invasion and metastasis were examined by ectopic induction of the beta(3), integrin subunit in RGP SBcl2 and WM1552C melanoma cells, which converts these cells to a VGP phenotype. We used cDNA representational difference analysis subtractive hybridization between beta(3)-Positive and -negative melanoma cells to assess gene expression profile changes accompanying RGP to VGP transition. Fourteen fragments from known genes including osteonectin (also known as SPARC and BM-40) were identified after three rounds of representational difference analysis. Induction of osteonectin was confirmed by Northern and Western blot analysis and immunohistochemistry and correlated in organotypic cultures with the beta(3)-induced progression from RGP to VGP melanoma. Expression of osteonectin was also associated with reduced adhesion to vitronectin, but not to fibronectin. Osteonectin expression was not blocked when melanoma cells were cultured with anti-alpha(v)beta(3) LM609 mAb, mitogen-activated protein kinase, or protein kinase C inhibitors, indicating that other signaling pathway(s) operate through a(v)beta(3) integrin during conversion from RGP to VGP.