988 resultados para Calcium (cellular)
Resumo:
The cytoskeleton, composed of actin filaments, intermediate filaments, and microtubules, is a highly dynamic supramolecular network actively involved in many essential biological mechanisms such as cellular structure, transport, movements, differentiation, and signaling. As a first step to characterize the biophysical changes associated with cytoskeleton functions, we have developed finite elements models of the organization of the cell that has allowed us to interpret atomic force microscopy (AFM) data at a higher resolution than that in previous work. Thus, by assuming that living cells behave mechanically as multilayered structures, we have been able to identify superficial and deep effects that could be related to actin and microtubule disassembly, respectively. In Cos-7 cells, actin destabilization with Cytochalasin D induced a decrease of the visco-elasticity close to the membrane surface, while destabilizing microtubules with Nocodazole produced a stiffness decrease only in deeper parts of the cell. In both cases, these effects were reversible. Cell softening was measurable with AFM at concentrations of the destabilizing agents that did not induce detectable effects on the cytoskeleton network when viewing the cells with fluorescent confocal microscopy. All experimental results could be simulated by our models. This technology opens the door to the study of the biophysical properties of signaling domains extending from the cell surface to deeper parts of the cell.
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites.
Resumo:
T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.
Resumo:
The concept of cellular schwannoma as an unusual benign tumor is well established for peripheral nerves but has never been tested in neurosurgical series. In order to test the validity of this concept in cranial nerves and spinal roots we performed an analysis of the clinical and morphological characteristics of 12 cellular and 166 classical benign schwannomas. Immunohistochemical detection of antigen expression in Schwann cells including proliferating cell nuclear antigen (PCNA) was also performed. This study shows that cellular schwannomas in neurosurgical series manifest at a lower age than the classical benign variant and occur mainly in the spinal roots. Mitotic activity and sinusoidal vessels appear more frequently in cellular schwannomas and constitute with high cellularity, the most valuable criteria separating both entities. The postoperative course in both types of tumors was free of metastases or sarcomatous changes. Immunoexpression of S-100 protein, vimentin, epithelial membrane antigen and glial fibrillary acidic protein is not statistically different between the two variants. In contrast, PCNA is more highly expressed in cellular schwannomas. These These results confirm the concept that cellular schwannomas are a clinico-pathological variant of benign schwannomas and provide significant support for the introduction of this entity in neurosurgical oncology.
Resumo:
Cellular inhibitor of apoptosis (cIAP) proteins, cIAP1 and cIAP2, are important regulators of tumor necrosis factor (TNF) superfamily (SF) signaling and are amplified in a number of tumor types. They are targeted by IAP antagonist compounds that are undergoing clinical trials. IAP antagonist compounds trigger cIAP autoubiquitylation and degradation. The TNFSF member TWEAK induces lysosomal degradation of TRAF2 and cIAPs, leading to elevated NIK levels and activation of non-canonical NF-kappaB. To investigate the role of the ubiquitin ligase RING domain of cIAP1 in these pathways, we used cIAP-deleted cells reconstituted with cIAP1 point mutants designed to interfere with the ability of the RING to dimerize or to interact with E2 enzymes. We show that RING dimerization and E2 binding are required for IAP antagonists to induce cIAP1 degradation and protect cells from TNF-induced cell death. The RING functions of cIAP1 are required for full TNF-induced activation of NF-kappaB, however, delayed activation of NF-kappaB still occurs in cIAP1 and -2 double knock-out cells. The RING functions of cIAP1 are also required to prevent constitutive activation of non-canonical NF-kappaB by targeting NIK for proteasomal degradation. However, in cIAP double knock-out cells TWEAK was still able to increase NIK levels demonstrating that NIK can be regulated by cIAP-independent pathways. Finally we show that, unlike IAP antagonists, TWEAK was able to induce degradation of cIAP1 RING mutants. These results emphasize the critical importance of the RING of cIAP1 in many signaling scenarios, but also demonstrate that in some pathways RING functions are not required.
Resumo:
In all actual clinical guidelines, dihydropyridine calcium channel blockers (CCBs) belong to the recommended first line antihypertensive drugs to treat essential hypertension. Several recent large clinical trials have confirmed their efficacy not only in lowering blood pressure but also in reducing cardiovascular morbidity and mortality in hypertensive patients with a normal or high cardiovascular risk profile. In clinical trials such as ALLHAT, VALUE or ASCOT, an amlodipine-based therapy was at least as effective, when not slightly superior, in lowering blood pressure and sometimes more effective in preventing target organ damages than blood pressure lowering strategies based on the use of diuretics, beta-blockers and blockers of the renin-angiotensin system. One of the main clinical side effects of the first and second generation CCBs including amlodipine is the development of peripheral edema. The incidence of leg edema can be markedly reduced by combining the CCB with a blocker of the renin-angiotensin system. This strategy has now led to the development of several fixed-dose combinations of amlodipine and angiotensin II receptor antagonists. Another alternative to lower the incidence of edema is to use CCBs of the third generation such as lercanidipine. Indeed, although no major clinical trials have been conducted with this compound, clinical studies have shown that lercanidipine and amlodipine have a comparable antihypertensive efficacy but with significantly less peripheral edema in patients receiving lercanidipine. In some countries, lercanidipine is now available in a single-pill association with an ACE inhibitor thereby further improving its efficacy and tolerability profile.
Resumo:
Report for the scientific sojourn carried out at the Department of Structure and Constituents of Matter during 2007.The main focus of the work was on phenomena related to nano-electromechanical processes that take place on a cellular level. Additionally, it has also been performed independent work related to charge and energy transfer in bio molecules, energy transfer in coupled spin systems as well as electrodynamics of nonlinear metamaterials.
Resumo:
T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.
Resumo:
Summary : Internal ribosome entry sites (IRES) are used by viruses as a strategy to bypass inhibition of cap-dependent translation that commonly results from viral infection. IRES are also used in eukaryotic cells to control mRNA translation under conditions of cellular stress (apoptosis, heat shock) or during the G2 phase of the cell cycle when general protein synthesis is inhibited. Variation in cellular expression levels has been shown to be inherited. Expression is controlled, among others, by transcriptional factors and by the efficiency of cap-mediated translation and ribosome activity. We aimed at identifying genomic determinants of variability in IRES-mediated translation of two representative IRES [Encephalomyocarditis virus (EMCV) and X-linked Inhibitor-of-Apoptosis (XIAP) IRES]. We used bicistronic lentiviral constructions expressing two fluorescent reporter transgenes. Lentiviruses were used to transduce seven different laboratory cell lines and B lymphoblastoid cell lines from the Centre d'Etude du Polymorphisme Humain (CEPH; 15 pedigrees; n=209); representing an in vitro approach to family structure allowing genome scan analyses. The relative expression of the two markers was assessed by FACS. IRES efficiency varies according to cellular background, but also varies, for a same cell type, among individuals. The control of IRES activity presents an inherited component (h2) of 0.47 and 0.36 for EMCV and XIAP IRES, respectively. A genome scan identified a suggestive Quantitative Trait Loci (LOD 2.35) involved in the control of XIAP IRES activity. Résumé : Les sites internes d'entrée des ribosomes (IRES = internal ribosome entry sites) sont utilisés par les virus comme une stratégie afin d'outrepasser l'inhibition de traduction qui résulte communément d'une infection virale. Les IRES sont également utilisés par les cellules eucaryotes pour contrôler la traduction de l'ARN messager dans des conditions de stress cellulaire (apoptose, choc thermique) ou durant la phase G2 du cycle cellulaire, situations durant lesquelles la synthèse générale des protéines est inhibée. La variation des niveaux d'expression cellulaire de transcription est un caractère héréditaire. L'expression des gènes est contrôlée entre autre par les facteurs de transcription et par l'efficacité de la traduction initiée par la coiffe ainsi que par l'activité des ribosomes. Durant cette étude nous avons eu pour but d'identifier les déterminants génomiques responsables de la variabilité de la traduction contrôlée par l'IRES. Ceci a été effectué en étudiant deux IRES représentatifs : l'IRES du virus de l'encéphalomyocardite (EMCV) et l'IRES de l'inhibiteur de l'apoptose XIAP (X-linked Inhibitor-of-Apoptosis). Nous avons utilisés des lentivirus délivrant un transgène bicistronique codant pour deux gènes rapporteurs fluorescents. Ces lentivirus ont été utilisés pour transduire sept différentes lignées cellulaires de laboratoire et des lignées cellulaires lymphoblastoïdes B du Centre d'Etude du Polymorphisme Humain (CEPH; 15 pedigrees; n=209) qui représentent une approche in vitro de la structure familiale et qui permettent des analyses par balayage du génome. L'expression relative des deux marqueurs fluorescents a été analysée par FACS. Nos résultats montrent que l'efficacité des IRES varie en fonction du type de cellules. Il varie aussi, pour le même type de cellules, selon les individus. Le contrôle de l'activité de l'IRES est un caractère héritable (héritabilité h2) de 0.47 et 0.36 pour les IRES de EMCV et XIAP respectivement. Le balayage du génome a permis l'identification d'un locus à effets quantitatifs [QTL Quantitative Trait Loci (LOD 2.35)] impliqué dans le contôle de l'activité de l'IRES de XIAP.
Resumo:
The cellular immune response to the circumsporozoite (CS) protein of plasmodium vivax of individuals from malaria-endemic areas of Brazil was studied. We examined the in vitro proliferative response of the peripheral blood mononuclear cells (PBMC) of 22 individuals when stimulated with a CS recombinant protein (rPvCS-2) and two other synthetic peptides based on the sequenceof the P. vivax CS protein. Seven of the individuals from malaria-endemic area displayed an antigen specific in vitro proliferative responseto the recombinant protein PvCS-2 and one out of 6, proliferative response to the peptide 308-320. In contrast, none of the individuals displayed a proliferative reponse when stimulated with the D/A peptide which represent some of the repeated units present in this CS protein. Our study, therefore, provides evidence for the presence, withinthe major surface antigen of P. vivax sporozoites, of epitopes capble to induce proliferation of human PBMC.
Resumo:
Very little is known about early molecular events triggering epithelial cell differentiation. We have examined the possible role of tyrosine phosphorylation in this process, as observed in cultures of primary mouse keratinocytes after exposure to calcium or 12-O-tetradecanoylphorbol-13-acetate (TPA). Immunoblotting with phosphotyrosine-specific antibodies as well as direct phosphoamino acid analysis revealed that induction of tyrosine phosphorylation occurs as a very early and specific event in keratinocyte differentiation. Very little or no induction of tyrosine phosphorylation was observed in a keratinocyte cell line resistant to the differentiating effects of calcium. Treatment of cells with tyrosine kinase inhibitors prevented induction of tyrosine phosphorylation by calcium and TPA and interfered with the differentiative effects of these agents. These results suggest that specific activation of tyrosine kinase(s) may play an important regulatory role in keratinocyte differentiation.
Resumo:
This paper discuses current strategies for the development of AIDS vaccines wich allow immunzation to disturb the natural course of HIV at different detailed stages of its life cycle. Mathematical models describing the main biological phenomena (i.e. virus and vaccine induced T4 cell growth; virus and vaccine induced activation latently infected T4 cells; incremental changes immune response as infection progress; antibody dependent enhancement and neutralization of infection) and allowing for different vaccination strategies serve as a backgroud for computer simulations. The mathematical models reproduce updated information on the behavior of immune cells, antibody concentrations and free viruses. The results point to some controversial outcomes of an AIDS vaccine such as an early increase in virus concentration among vaccinated when compared to nonvaccinated individuals.
Resumo:
Sixteen patients with essential hypertension were treated for 2 consecutive 6-week periods with either the angiotensin-converting enzyme (ACE) inhibitor enalapril (20 mg once daily) or the calcium antagonist diltiazem (120 mg twice daily). The sequence of the treatment phases was randomly allocated. Blood pressure decreased from 154/102 +/- 5/2 mm Hg (mean +/- SEM) to 135/96 +/- 4/2 and 140/98 +/- 3/2 mm Hg during treatment with enalapril and diltiazem, respectively. It was impossible in the individual hypertensive patient to predict the long-term blood pressure response to one of the agents studied based on the long-term blood pressure response to the other agent.
Resumo:
Both late menarcheal age and low calcium intake (Ca intake) during growth are risk factors for osteoporosis, probably by impairing peak bone mass. We investigated whether lasting gain in areal bone mineral density (aBMD) in response to increased Ca intake varies according to menarcheal age and, conversely, whether Ca intake could influence menarcheal age. In an initial study, 144 prepubertal girls were randomized in a double-blind controlled trial to receive either a Ca supplement (Ca-suppl.) of 850 mg/d or placebo from age 7.9-8.9 yr. Mean aBMD gain determined by dual energy x-ray absorptiometry at six sites (radius metaphysis, radius diaphysis, femoral neck, trochanter, femoral diaphysis, and L2-L4) was significantly (P = 0.004) greater in the Ca-suppl. than in the placebo group (27 vs. 21 mg/cm(2)). In 122 girls followed up, menarcheal age was recorded, and aBMD was determined at 16.4 yr of age. Menarcheal age was lower in the Ca-suppl. than in the placebo group (P = 0.048). Menarcheal age and Ca intake were negatively correlated (r = -0.35; P < 0.001), as were aBMD gains from age 7.9-16.4 yr and menarcheal age at all skeletal sites (range: r = -0.41 to r = -0.22; P < 0.001 to P = 0.016). The positive effect of Ca-suppl. on the mean aBMD gain from baseline remained significantly greater in girls below, but not in those above, the median of menarcheal age (13.0 yr). Early menarcheal age (12.1 +/- 0.5 yr): placebo, 286 +/- 36 mg/cm(2); Ca-suppl., 317 +/- 46 (P = 0.009); late menarcheal age (13.9 +/- 0.5 yr): placebo, 284 +/- 58; Ca-suppl., 276 +/- 50 (P > 0.05). The level of Ca intake during prepuberty may influence the timing of menarche, which, in turn, could influence long-term bone mass gain in response to Ca supplementation. Thus, both determinants of early menarcheal age and high Ca intake may positively interact on bone mineral mass accrual.