953 resultados para Cal
Resumo:
Palaeoecological methods can provide an environmental context for archaeological sites, enabling the nature of past human activity to be explored from an indirect but alternative perspective. Through a palynological study of a small fen wetland located within the catchment of a multi-period prehistoric complex at Ballynahatty, Co. Down, Northern Ireland, we reconstruct the vegetation history of the area during the early prehistoric period. The pollen record reveals tentative evidence for Mesolithic activity in the area at 6410-6220 cal. BC, with woodland disturbance identified during the Mesolithic-Neolithic transitional period ca. 4430-3890 cal. BC. A more significant impact on the landscape is observed in the Early Neolithic from 3944-3702 cal. BC, with an opening up of the forests and the establishment of a mixed agricultural economy. This activity precedes and continues to be evident during the Mid-Neolithic during which megalithic tombs and related burial sites were constructed at Ballynahatty. Due to chronological uncertainties and a possible hiatus in peat accumulation in the fen, the contemporary environment of the Ballynahatty timber circle complex (constructed and used ca. 3080-2490 cal. BC) and henge (dating to the third millennium cal. BC) cannot certainly be established. Nevertheless, the pollen record suggests that the landscape remained open through to the Bronze Age, implying a long continuity of human activity in the area. These findings support the idea that the Ballynahatty prehistoric complex was the product of a gradual and repeated restructuring of the ritual and ceremonial landscape whose significance continued to be recognised throughout the early prehistoric period.
Resumo:
In Ireland, the Middle to Late Bronze Age (1500-600 cal. B.C.) is characterised by alternating phases of prolific metalwork production (the Bishopsland and Dowris Phases) and apparent recessions (the Roscommon Phase and the Late Bronze Age-Iron Age transition). In this paper, these changes in material culture are placed in a socio-economic context by examining contemporary settlement and land-use patterns interpreted from the pollen record. The vegetation histories of six tephrochronologically-linked sites are presented that provide high-resolution and chronologically well-resolved insights into changes in landscape use over the Middle to Late Bronze Age. The records are compared with published pollen records in an attempt to discern if there are any trends of woodland clearance and abandonment from which changes in settlement patterns can be inferred. The results suggest that prolific metalworking industries correlate chronologically with expansive farming activity, which indicates that they were supported by a productive subsistence economy. Conversely, declines in metalwork production occur during periods when farming activity is generally less extensive and perhaps more centralised, and it is proposed that disparate socio-economic or –political factors, rather than a collapse of the subsistence economy, lies behind the demise of metalworking industries.
Resumo:
Este artículo analiza la imagen de la Ciudad de México configurada en la crónica mexicana a partir de los años setenta en especial en los textos de José Joaquín Blanco. Se detiene en el modo en que el género afronta la realidad de una megalópolis que ya solo puede ser asumida de modo fragmentario y múltiple. Entre la utopía y una visión apocalíptica de la ciudad, la crónica reconfigura el espacio y el tiempo urbanos, y formula una nueva identidad crítica gracias a la habilitación de espacios de expresión posibles dentro de las nuevas ciudades modificadas por el capital.
Resumo:
The reconstruction and structure of the European Holocene “wildwood” has been the focus of considerable academic debate. The ability of palaeoecological data and particularly pollen analysis to accurately reflect the density of wildwood canopy has also been widely discussed. Fossil insects, as a proxy for vegetation and landscape structure, provide a potential approach to address this argument. Here, we present a review and re-analysis of 36 early and mid-Holocene (9500-2000 cal BC) sub-fossil beetle assemblages from Britain, examining percentage values of tree, open ground and dung beetles as well as tree host data to gain an insight into vegetation structure, the role of grazing animals in driving such structure and establish independently the importance of different types of trees and associated shading in the early Holocene “wildwood”. Open indicator beetle species are persistently present over the entire review period, although they fluctuate in importance. During the early Holocene (9500-6000 cal BC), these indicators are initially high, at levels which are not dissimilar to modern data from pasture woodland. However, during the latter stages of this and the next period, 6000-4000 cal BC, open ground and pasture indicators decline and are generally low compared with previously. Alongside this pattern, we see woodland indicators generally increase in importance, although there are significant local fluctuations. Levels of dung beetles are mostly low over these periods, with some exceptions to this pattern, especially towards the end of the Mesolithic and in floodplain areas. Host data associated with the fossil beetles indicate that trees associated with lighter canopy conditions such as oak, pine, hazel and birch are indeed important components of the tree canopy during the earlier Holocene (c. 9500-6000 cal BC), in accordance with much of the current pollen literature. Beetles associated with more shade-tolerant trees (such as lime and elm) become more frequent in the middle Holocene (6000-4000 cal BC) suggesting that at this stage the woodland canopy was less open than previously, although open ground and pasture areas appear to have persisted in some locations. The onset of agriculture (4000-2000 cal BC) coincides with significant fluctuations in woodland composition and taxa. This is presumably as a result of human impact, although here there are significant regional variations. There are also increases in the amounts of open ground represented and especially in the levels of dung beetles present in faunas, suggesting there is a direct relationship between the activities of grazing animals and the development of more open areas. One of the most striking aspects of this review is the variable nature of the landscape suggested by the palaeoecological data, particularly but not exclusively with the onset of agriculture: some earlier sites indicate high variability between levels of tree-associated species on the one hand and the open ground beetle fauna on the other, indicating that in some locations, open areas were of local significance and can be regarded as important features of the Holocene landscape. The role of grazing animals in creating these areas of openness was apparently minimal until the onset of the Neolithic.
Resumo:
The problem of insufficient age-control limits the utilisation of the 8.2 ka BP event for modelling freshwater forcing in climate change studies. High-resolution radiocarbon dates, magnetic susceptibility and lithostratigraphic evidence from a lake sediment core from Nedre Hervavatnet located at Sygnefjell in western Norway provide a record of the early Holocene. We use the method of radiocarbon wiggle-match dating of the lake sediments using the non-linear relationship between the C-14 calibration curve and the consecutive accumulation order of the sample series in order to build a high-resolution age-model. The timing and duration of Holocene environmental changes is estimated using 38 AMS radiocarbon dates on terrestrial macrofossils, insects and chironomids covering the time period from 9750 to 1180 cal BP. Chironomids, Salix and Betula leaves produce the most consistent results. Sedimentological and physical properties of the core suggest that three meltwater events with high sedimentation rates are superimposed on a long-term trend with glacier retreat between 9750 and 8000 cal BP. The lake sediment sequence of Nedre Hervavatnet demonstrates the following: only a reliable high-resolution geochronology based on carefully selected terrestrial macrofossils allows the reconstruction of a more refined and complex environmental change history before and during the 8.2 ka event. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Connections between environmental and cultural changes are analysed in Estonia during the past c. 4,500 years. Records of cereal-type pollen as (agri)cultural indices are compared with high-resolution palaeohydrological and annual mean temperature reconstructions from a selection of Estonian bogs and lakes (and Lake Igelsjon in Sweden). A broad-scale comparison shows increases in the percentage of cereal-type pollen during a decreasing trend in annual mean temperatures over the past c. 4,300 years, suggesting a certain independence of agrarian activities from environmental conditions at the regional level. The first cereal-type pollen in the region is found from a period with a warm and dry climate. A slow increase in pollen of cultivated land is seen around the beginning of the late Bronze Age, a slight increase at the end of the Roman Iron Age and a significant increase at the beginning of the Middle Ages. In a few cases increases in agricultural pollen percentages occur in the periods of warming. Stagnation and regression occurs in the periods of cooling, but regression at individual sites may also be related to warmer climate episodes. The cooling at c. 400-300 cal b.p., during the 'Little Ice Age' coincides with declines in cereal-type and herb pollen curves. These may not, however, be directly related to the climate change, because they coincide with war activities in the region.
Resumo:
A comprehensively C-14 AMS dated pollen and chironomid record from Boundary Stream Tarn provides the first chironomid-derived temperature reconstruction to quantify temperature change during Lateglacial times (17,500-10,000 cal yr BP) in the Southern Alps, New Zealand. The records indicate a ca 1000-year disruption to the Lateglacial warming trend and an overall cooling consistent with the Antarctic Cold Reversal (ACR). The main interval of chironomid-inferred summer temperature depression (similar to 2-3 degrees C) lasted about 700 years during the ACR. Following this cooling event, both proxies indicate a warming step to temperatures slightly cooler than present during the Younger Dryas chronozone (12,900-11,500 cal yr BP). These results highlight a direct linkage between Antarctica and mid-latitude terrestrial climate systems and the largely asynchronous nature of the interhemispheric climate system during the last glacial transition. The greater magnitude of temperature changes shown by the chironomid record is attributed to the response of the proxies to differences in seasonal climate with chironomids reflecting summer temperature and vegetation more strongly controlled by duration of winter or by minimum temperatures. These differences imply stronger seasonality at times during the Lateglacial, which may explain some of the variability between other paleoclimate records from New Zealand and have wider implications for understanding differences between proxy records for abrupt climate change. (C) 2007 Elsevier Ltd. All rights reserved.
Peat multi-proxy data from Mannikjarve bog as indicators of late Holocene climate changes in Estonia
Resumo:
As part of a wider project on European climate change over the past 4500 years, a 4.5-m peat core was taken from a lawn microform on Mannikjarve bog, Estonia. Several methods were used to yield proxy-climate data: (i) a quadrat and leaf-count method for plant macrofossil data, (ii) testate amoebae analysis, and (iii) colorimetric determination of peat humification. These data are provided with an exceptionally high resolution and precise chronology. Changes in bog surface wetness were inferred using Detrended Correspondence Analysis (DCA) and zonation of macrofossil data, particularly concerning the occurrence of Sphagnum balticum, and a transfer function for water-table depth for testate amoebae data. Based on the results, periods of high bog surface wetness appear to have occurred at c. 3100, 3010-2990, 2300, 1750-1610, 1510, 14 10, 1110, 540 and 3 10 cal. yr BP, during four longer periods between c. 3170 and 2850 cal. yr BP, 2450 and 2000 cal. yr BP, 1770 and 1530 cal. yr BP and in the period from 880 cal. yr BP until the present. In the period between 1770 and 1530 cal. yr BP. the extension or initiation of a hollow microtope occurred, which corresponds with other research results from Mannikjarve bog. This and other changes towards increasing bog surface wetness may be the responses to colder temperatures and the predominance of a more continental climate in the region, which favoured the development of bog microdepressions and a complex bog microtopography. Located in the border zone of oceanic and continental climatic sectors, in an area almost without land uplift, this study site may provide valuable information about changes in palaeohydrological and palaeoclimatological conditions in the northern parts of the eastern Baltic Sea region.
Resumo:
The discovery of sensitive paleoenvironmental proxies contained within fossilized rock hyrax middens from the margin of the central Namib Desert, Africa, is providing unprecedented insight into the region's environmental history. High-resolution stable carbon and nitrogen isotope records spanning 0-11,700 cal (calibrated) yr B. P. indicate phases of relatively humid conditions from 8700-7500, 6900-6700, 5600-4900, and 4200-3500 cal yr B. P., with a period of marked aridity occurring from 3500 until ca. 300 cal yr B. P. Transitions between these phases appear to have occurred very rapidly, often within <200 years. Of particular importance are: (1) the observed relationship between regional aridification and the decline in Northern Hemisphere insolation across the Holocene, and (2) the significance of suborbital scale variations in climate that covary strongly with fluctuations in solar forcing. Together, these elements call for a fundamental reexamination of the role of orbital forcing on tropical African systems, and a reconsideration of what factors drive climate change in the region. The quality and resolution of these data far surpass any other evidence available from the region, and the continued development of this unique archive promises to revolutionize paleoenvironmental studies in southern Africa.
Resumo:
A recently exposed inter-tidal peat bed at Ballywoolen, Bann estuary, Co. Londonderry, has yielded new information about mid-Holocene coastal environmental change in the northeast of Ireland. Pollen analytical data and wood detritus demonstrate that peat accumulation occurred in a terrestrial environment that was free from marine influence. Radiocarbon dates suggest that the peat accumulated rapidly during a period of low relative sea level subsequent to the maximum of Holocene relative sea-level rise along the north coast of Northern Ireland. The absence of marine/brackish indicator taxa at the site suggests that the tidal range was somewhat less than that at present and/or that the channel of the river was located some distance east of its present alignment. The dates indicate that the low stand lasted for at least ~0.2 ka and possibly for ~1.1 ka. Stable, woodland-dominated landscapes are indicated at both this site and neighbouring ones around ~6.4-5.3 cal ka BP. There is no evidence for large-scale aeolian sand movement or human impact on the landscape during the period of peat accumulation.
Resumo:
From the Sellevollmyra bog at Andoya, northern Norway, a 440-cm long peat core covering the last c. 7000 calendar years was examined for humification, loss-on-ignition, microfossils, macrofossils and tephra. The age model was based on a Bayesian wiggle-match of 35 C-14 dates and two historically anchored tephra layers. Based on changes in lithology and biostratigraphical climate proxies, several climatic changes were identified ( periods of the most fundamental changes in italics): 6410-6380, 6230-6050, 5730-5640, 5470-5430, 5340-5310, 5270-5100, 4790-4710, 4890-4820, 4380-4320, 4220-4120, 4000-3810, 3610-3580, 3370-3340 ( regionally 2850-2750; in Sellevollmyra a hiatus between 2960-2520), 2330-2220, 1950, 1530-1450, 1150-840, 730? and c. 600? cal. yr BP. Most of these climate changes are known from other investigations of different palaeoclimate proxies in northern and middle Europe. Some volcanic eruptions seemingly coincide with vegetation changes recorded in the peat, e.g. about 5760 cal. yr BP; however, the known climatic deterioration at the time of the Hekla-4 tephra layer started some decades before the eruption event.
Resumo:
Microlaminated sediment cores from the Kalya slope region of Lake Tanganyika provide a near-annually resolved paleoclimate record between similar to 2,840 and 1,420 cal. yr B.P. demonstrating strong linkages between climate variability and lacustrine productivity. Laminae couplets comprise dark, terrigenous-dominated half couplets, interpreted as low density underflows deposited from riverine sources during the rainy season, alternating with light, planktonic diatomaceous ooze, with little terrigenous component, interpreted as windy/dry season deposits. Laminated portions of the studied cores consist of conspicuous dark and light colored bundles of laminae couplets. Light and dark bundles alternate at decadal time scales. Within dark bundles, both light and dark half couplets are significantly thinner than within light bundles, implying slower sediment accumulation rates during both seasons over those intervals.
Resumo:
Accurate chronologies are essential for linking palaeoclimate archives. Carbon-14 wiggle-match dating was used to produce an accurate chronology for part of an early Holocene peat sequence from the Borchert (The Netherlands). Following the Younger Dryas-Preboreal transition, two climatic shifts could be inferred. Around 11 400 cal. yr BP the expansion of birch (Betula) forest was interrupted by a dry continental phase with dominantly open grassland vegetation, coeval with the PBO (Preboreal Oscillation), as observed in the GRIP ice core. At 11 250 cal. yr BP a sudden shift to a humid climate occurred. This second change appears to be contemporaneous with: (i) a sharp increase of atmospheric C-14; (ii) a temporary decline of atmospheric CO2; and (iii) an increase in the GRIP Be-10 flux. The close correspondence with excursions of cosmogenic nuclides points to a decline in solar activity, which may have forced the changes in climate and vegetation at around 11 250 cal. yr BP. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
A ca. 1400-yr record from a raised bog in Isla Grande, Tierra del Fuego, Argentina, registers climate fluctuations, including a Medieval Warm Period, although evidence for the 'Little Ice Age' is less clear. Changes in temperature and/or precipitation were inferred from plant macrofossils, pollen, fungal spores, testate amebae, and peat humification. The chronology was established using a C-14 wiggle-matching technique that provides improved age control for at least part of the record compared to other sites. These new data are presented and compared with other lines of evidence from the Southern and Northern Hemispheres. A period of low local water tables occurred in the bog between A.D. 960-1020, which may correspond to the Medieval Warm Period date range of A.D. 950-1045 generated from Northern Hemisphere tree-ring data. A period of cooler and/or wetter conditions was detected between ca. A.D. 1030 and I 100 and a later period of cooler/wetter conditions estimated at ca. cal A.D. 1800-1930, which may correspond to a cooling episode inferred from Law Dome, Antarctica. (C) 2004 University of Washington. All rights reserved.
Resumo:
Closely spaced sequences of accelerator mass spectrometer (AMS) C-14 dates of peat deposits display century-scale wiggles which can be fitted to the radiocarbon calibration curve. By wiggle-matching such sequences, high-precision calendar age chronologies can be generated which show that changes in mire surface wetness during the Bronze Age/Iron Age transition (c. 850 cal. BC) and the 'Little Ice Age' (Wolf, Sporer, Maunder and Dalton Minima) occurred during periods of suddenly increasing atmospheric concentration of C-14. Replicate evidence from peat-based proxy climate indicators in northwest Europe suggest these changes in climate may have been driven by temporary declines of solar activity. Carbon-accumulation rates of two raised peat bogs in the UK and Denmark record low values during the 'Little Ice Age' which reflects reduced primary productivity of the peat-forming vegetation during these periods of climatic deterioration.