980 resultados para CROP LOSS MODELS
Resumo:
Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector's life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis' life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector-based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector.
Resumo:
Spinal cord injury (SCI) is a devastating condition, which results from trauma to the cord, resulting in a primary injury response which leads to a secondary injury cascade, causing damage to both glial and neuronal cells. Following trauma, the central nervous system (CNS) fails to regenerate due to a plethora of both intrinsic and extrinsic factors. Unfortunately, these events lead to loss of both motor and sensory function and lifelong disability and care for sufferers of SCI. There have been tremendous advancements made in our understanding of the mechanisms behind axonal regeneration and remyelination of the damaged cord. These have provided many promising therapeutic targets. However, very few have made it to clinical application, which could potentially be due to inadequate understanding of compound mechanism of action and reliance on poor SCI models. This thesis describes the use of an established neural cell co-culture model of SCI as a medium throughput screen for compounds with potential therapeutic properties. A number of compounds were screened which resulted in a family of compounds, modified heparins, being taken forward for more intense investigation. Modified heparins (mHeps) are made up of the core heparin disaccharide unit with variable sulphation groups on the iduronic acid and glucosamine residues; 2-O-sulphate (C2), 6-O-sulphate (C6) and N-sulphate (N). 2-O-sulphated (mHep6) and N-sulphated (mHep7) heparin isomers were shown to promote both neurite outgrowth and myelination in the SCI model. It was found that both mHeps decreased oligodendrocyte precursor cell (OPC) proliferation and increased oligodendrocyte (OL) number adjacent to the lesion. However, there is a difference in the direct effects on the OL from each of the mHeps; mHep6 increased myelin internode length and mHep7 increased the overall cell size. It was further elucidated that these isoforms interact with and mediate both Wnt and FGF signalling. In OPC monoculture experiments FGF2 treated OPCs displayed increased proliferation but this effect was removed when co-treated with the mHeps. Therefore, suggesting that the mHeps interact with the ligand and inhibit FGF2 signalling. Additionally, it was shown that both mHeps could be partially mediating their effects through the Wnt pathway. mHep effects on both myelination and neurite outgrowth were removed when co-treated with a Wnt signalling inhibitor, suggesting cell signalling mediation by ligand immobilisation and signalling activation as a mechanistic action for the mHeps. However, the initial methods employed in this thesis were not sufficient to provide a more detailed study into the effects the mHeps have on neurite outgrowth. This led to the design and development of a novel microfluidic device (MFD), which provides a platform to study of axonal injury. This novel device is a three chamber device with two chambers converging onto a central open access chamber. This design allows axons from two points of origin to enter a chamber which can be subjected to injury, thus providing a platform in which targeted axonal injury and the regenerative capacity of a compound study can be performed. In conclusion, this thesis contributes to and advances the study of SCI in two ways; 1) identification and investigation of a novel set of compounds with potential therapeutic potential i.e. desulphated modified heparins. These compounds have multiple therapeutic properties and could revolutionise both the understanding of the basic pathological mechanisms underlying SCI but also be a powered therapeutic option. 2) Development of a novel microfluidic device to study in greater detail axonal biology, specifically, targeted axonal injury and treatment, providing a more representative model of SCI than standard in vitro models. Therefore, the MFD could lead to advancements and the identification of factors and compounds relating to axonal regeneration.
Resumo:
We derive and solve models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel. We consider a variety of loss laws and a variety of coagulation kernels, deriving exact results where possible, and more generally reducing the equations to similarity solutions valid in the large-time limit. One notable result is the effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial cluster size distribution function, we illustrate how numerical results from earlier work can be interpreted in the light of the theory presented herein.
Resumo:
Friedreich ataxia (FRDA) is the most common form of autosomal-recessive ataxia. Common nonmotor features include cardiomyopathy and diabetes mellitus. At present, no effective treatments are available to prevent disease progression. Age of onset varies from infancy to adulthood. In the majority of patients, FRDA is caused by intronic GAA expansions in FXN, which encodes a highly-conserved small mitochondrial matrix protein, frataxin. A mouse model of FRDA has been difficult to generate because complete loss of frataxin causes early embryonic lethality. Although there are some controversies about the function of frataxin, recent biochemical and structural studies have confirmed that it is a component of the multiprotein complex that assembles iron-sulfur clusters in the mitochondrial matrix. The main consequences of frataxin deficiency are energy deficit, altered iron metabolism, and oxidative damage.
Resumo:
Nonpoint sources (NPS) pollution from agriculture is the leading source of water quality impairment in U.S. rivers and streams, and a major contributor to lakes, wetlands, estuaries and coastal waters (U.S. EPA 2016). Using data from a survey of farmers in Maryland, this dissertation examines the effects of a cost sharing policy designed to encourage adoption of conservation practices that reduce NPS pollution in the Chesapeake Bay watershed. This watershed is the site of the largest Total Maximum Daily Load (TMDL) implemented to date, making it an important setting in the U.S. for water quality policy. I study two main questions related to the reduction of NPS pollution from agriculture. First, I examine the issue of additionality of cost sharing payments by estimating the direct effect of cover crop cost sharing on the acres of cover crops, and the indirect effect of cover crop cost sharing on the acres of two other practices: conservation tillage and contour/strip cropping. A two-stage simultaneous equation approach is used to correct for voluntary self-selection into cost sharing programs and account for substitution effects among conservation practices. Quasi-random Halton sequences are employed to solve the system of equations for conservation practice acreage and to minimize the computational burden involved. By considering patterns of agronomic complementarity or substitution among conservation practices (Blum et al., 1997; USDA SARE, 2012), this analysis estimates water quality impacts of the crowding-in or crowding-out of private investment in conservation due to public incentive payments. Second, I connect the econometric behavioral results with model parameters from the EPA’s Chesapeake Bay Program to conduct a policy simulation on water quality effects. I expand the econometric model to also consider the potential loss of vegetative cover due to cropland incentive payments, or slippage (Lichtenberg and Smith-Ramirez, 2011). Econometric results are linked with the Chesapeake Bay Program watershed model to estimate the change in abatement levels and costs for nitrogen, phosphorus and sediment under various behavioral scenarios. Finally, I use inverse sampling weights to derive statewide abatement quantities and costs for each of these pollutants, comparing these with TMDL targets for agriculture in Maryland.
Resumo:
Doutoramento em Gestão
Resumo:
For climate risk management, cumulative distribution functions (CDFs) are an important source of information. They are ideally suited to compare probabilistic forecasts of primary (e.g. rainfall) or secondary data (e.g. crop yields). Summarised as CDFs, such forecasts allow an easy quantitative assessment of possible, alternative actions. Although the degree of uncertainty associated with CDF estimation could influence decisions, such information is rarely provided. Hence, we propose Cox-type regression models (CRMs) as a statistical framework for making inferences on CDFs in climate science. CRMs were designed for modelling probability distributions rather than just mean or median values. This makes the approach appealing for risk assessments where probabilities of extremes are often more informative than central tendency measures. CRMs are semi-parametric approaches originally designed for modelling risks arising from time-to-event data. Here we extend this original concept beyond time-dependent measures to other variables of interest. We also provide tools for estimating CDFs and surrounding uncertainty envelopes from empirical data. These statistical techniques intrinsically account for non-stationarities in time series that might be the result of climate change. This feature makes CRMs attractive candidates to investigate the feasibility of developing rigorous global circulation model (GCM)-CRM interfaces for provision of user-relevant forecasts. To demonstrate the applicability of CRMs, we present two examples for El Ni ? no/Southern Oscillation (ENSO)-based forecasts: the onset date of the wet season (Cairns, Australia) and total wet season rainfall (Quixeramobim, Brazil). This study emphasises the methodological aspects of CRMs rather than discussing merits or limitations of the ENSO-based predictors.
Resumo:
A large proportion of human populations suffer memory impairments either caused by normal aging or afflicted by diverse neurological and neurodegenerative diseases. Memory enhancers and other drugs tested so far against memory loss have failed to produce therapeutic efficacy in clinical trials and thus, there is a need to find remedy for this mental disorder. In search for cure of memory loss, our laboratory discovered a robust memory enhancer called RGS14(414). A treatment in brain with its gene produces an enduring effect on memory that lasts for lifetime of rats. Therefore, current thesis work was designed to investigate whether RGS14(414) treatment can prevent memory loss and furthermore, explore through biological processes responsible for RGS-mediated memory enhancement. We found that RGS14(414) gene treatment prevented episodic memory loss in rodent models of normal aging and Alzheimer´s disease. A memory loss was observed in normal rats at 18 months of age; however, when they were treated with RGS14(414) gene at 3 months of age, they abrogated this deficit and their memory remained intact till the age of 22 months. In addition to normal aging rats, effect of memory enhancer treatment in mice model of Alzheimer´s disease (AD-mice) produced a similar effect. AD-mice subjected to treatment with RGS14(414) gene at the age of 2 months, a period when memory was intact, showed not only a prevention in memory loss observed at 4 months of age but also they were able to maintain normal memory after 6 months of the treatment. We posit that long-lasting effect on memory enhancement and prevention of memory loss mediated through RGS14(414) might be due to a permanent structural change caused by a surge in neuronal connections and enhanced neuronal remodeling, key processes for long-term memory formation. A neuronal arborization analysis of both pyramidal and non-pyramidal neurons in brain of RGS14(414)-treated rats exhibited robust rise in neurites outgrowth of both kind of cells, and an increment in number of branching from the apical dendrite of pyramidal neurons, reaching to almost three times of the control animals. To further understand of underlying mechanism by which RGS14(414) induces neuronal arborization, we investigated into neurotrophic factors. We observed that RGS14 treatment induces a selective increase in BDNF. Role of BDNF in neuronal arborization, as well as its implication in learning and memory processes is well described. In addition, our results showing a dynamic expression pattern of BDNF during ORM processing that overlapped with memory consolidation further support the idea of the implication of this neurotrophin in formation of long-term memory in RGS-animals. On the other hand, in studies of expression profiling of RGS-treated animals, we have demonstrated that 14-3-3ζ protein displays a coherent relationship to RGS-mediated ORM enhancement. Recent studies have demonstrated that the interaction of receptor for activated protein kinase 1 (RACK1) with 14-3-3ζ is essential for its nuclear translocation, where RACK1-14-3-3ζ complex binds at promotor IV region of BDNF and promotes an increase in BDNF gene transcription. These observations suggest that 14-3-3ζ might regulate the elevated level of BDNF seen in RGS14(414) gene treated animals. Therefore, it seems that RGS-mediated surge in 14-3-3ζ causes elevated BDNF synthesis needed for neuronal arborization and enhanced ORM. The prevention of memory loss might be mediated through a restoration in BDNF and 14-3-3ζ protein levels, which are significantly decreased in aging and Alzheimer’s disease. Additionally, our results demonstrate that RGS14(414) treatment could be a viable strategy against episodic memory loss.
Resumo:
In marginal lands Opuntia ficus-indica (OFI) could be used as an alternative fruit and forage crop. The plant vigour and the biomass production were evaluated in Portuguese germplasm (15 individuals from 16 ecotypes) by non-destructive methods, 2 years following planting in a marginal soil and dryland conditions. Two Italian cultivars (Gialla and Bianca) were included in the study for comparison purposes. The biomass production and the plant vigour were estimated by measuring the cladodes number and area, and the fresh (FW) and dry weight (DW) per plant. We selected linear models by using the biometric data from 60 cladodes to predict the cladode area, the FW and the DW per plant. Among ecotypes, significant differences were found in the studied biomass-related parameters and several homogeneous groups were established. Four Portuguese ecotypes had higher biomass production than the others, 3.20 Mg ha−1 on average, a value not significantly different to the improved ‘Gialla’ cultivar, which averaged 3.87 Mg ha−1. Those ecotypes could be used to start a breeding program and to deploy material for animal feeding and fruit production.
Resumo:
Shockley diode equation is basic for single diode model equation, which is overly used for characterizing the photovoltaic cell output and behavior. In the standard equation, it includes series resistance (Rs) and shunt resistance (Rsh) with different types of parameters. Maximum simulation and modeling work done previously, related to single diode photovoltaic cell used this equation. However, there is another form of the standard equation which has not included Series Resistance (Rs) and Shunt Resistance (Rsh) yet, as the Shunt Resistance is much bigger than the load resistance and the load resistance is much bigger than the Series Resistance. For this phenomena, very small power loss occurs within a photovoltaic cell. This research focuses on the comparison of two forms of basic Shockley diode equation. This analysis describes a deep understanding of the photovoltaic cell, as well as gives understanding about Series Resistance (Rs) and Shunt Resistance (Rsh) behavior in the Photovoltaic cell. For making estimation of a real time photovoltaic system, faster calculation is needed. The equation without Series Resistance and Shunt Resistance is appropriate for the real time environment. Error function for both Series resistance (Rs) and Shunt resistances (Rsh) have been analyzed which shows that the total system is not affected by this two parameters' behavior.
Resumo:
Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation?atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.
Resumo:
Crop monitoring and more generally land use change detection are of primary importance in order to analyze spatio-temporal dynamics and its impacts on environment. This aspect is especially true in such a region as the State of Mato Grosso (south of the Brazilian Amazon Basin) which hosts an intensive pioneer front. Deforestation in this region as often been explained by soybean expansion in the last three decades. Remote sensing techniques may now represent an efficient and objective manner to quantify how crops expansion really represents a factor of deforestation through crop mapping studies. Due to the special characteristics of the soybean productions' farms in Mato Grosso (area varying between 1000 hectares and 40000 hectares and individual fields often bigger than 100 hectares), the Moderate Resolution Imaging Spectroradiometer (MODIS) data with a near daily temporal resolution and 250 m spatial resolution can be considered as adequate resources to crop mapping. Especially, multitemporal vegetation indices (VI) studies have been currently used to realize this task [1] [2]. In this study, 16-days compositions of EVI (MODQ13 product) data are used. However, although these data are already processed, multitemporal VI profiles still remain noisy due to cloudiness (which is extremely frequent in a tropical region such as south Amazon Basin), sensor problems, errors in atmospheric corrections or BRDF effect. Thus, many works tried to develop algorithms that could smooth the multitemporal VI profiles in order to improve further classification. The goal of this study is to compare and test different smoothing algorithms in order to select the one which satisfies better to the demand which is classifying crop classes. Those classes correspond to 6 different agricultural managements observed in Mato Grosso through an intensive field work which resulted in mapping more than 1000 individual fields. The agricultural managements above mentioned are based on combination of soy, cotton, corn, millet and sorghum crops sowed in single or double crop systems. Due to the difficulty in separating certain classes because of too similar agricultural calendars, the classification will be reduced to 3 classes : Cotton (single crop), Soy and cotton (double crop), soy (single or double crop with corn, millet or sorghum). The classification will use training data obtained in the 2005-2006 harvest and then be tested on the 2006-2007 harvest. In a first step, four smoothing techniques are presented and criticized. Those techniques are Best Index Slope Extraction (BISE) [3], Mean Value Iteration (MVI) [4], Weighted Least Squares (WLS) [5] and Savitzky-Golay Filter (SG) [6] [7]. These techniques are then implemented and visually compared on a few individual pixels so that it allows doing a first selection between the five studied techniques. The WLS and SG techniques are selected according to criteria proposed by [8]. Those criteria are: ability in eliminating frequent noises, conserving the upper values of the VI profiles and keeping the temporality of the profiles. Those selected algorithms are then programmed and applied to the MODIS/TERRA EVI data (16-days composition periods). Tests of separability are realized based on the Jeffries-Matusita distance in order to see if the algorithms managed in improving the potential of differentiation between the classes. Those tests are realized on the overall profile (comprising 23 MODIS images) as well as on each MODIS sub-period of the profile [1]. This last test is a double interest process because it allows comparing the smoothing techniques and also enables to select a set of images which carries more information on the separability between the classes. Those selected dates can then be used to realize a supervised classification. Here three different classifiers are tested to evaluate if the smoothing techniques as a particular effect on the classification depending on the classifiers used. Those classifiers are Maximum Likelihood classifier, Spectral Angle Mapper (SAM) classifier and CHAID Improved Decision tree. It appears through the separability tests on the overall process that the smoothed profiles don't improve efficiently the potential of discrimination between classes when compared with the original data. However, the same tests realized on the MODIS sub-periods show better results obtained with the smoothed algorithms. The results of the classification confirm this first analyze. The Kappa coefficients are always better with the smoothing techniques and the results obtained with the WLS and SG smoothed profiles are nearly equal. However, the results are different depending on the classifier used. The impact of the smoothing algorithms is much better while using the decision tree model. Indeed, it allows a gain of 0.1 in the Kappa coefficient. While using the Maximum Likelihood end SAM models, the gain remains positive but is much lower (Kappa improved of 0.02 only). Thus, this work's aim is to prove the utility in smoothing the VI profiles in order to improve the final results. However, the choice of the smoothing algorithm has to be made considering the original data used and the classifier models used. In that case the Savitzky-Golay filter gave the better results.
Resumo:
Gastrointestinal stromal tumors (GIST) are the most common di tumors of the gastrointestinal tract, arising from the interstitial cells of Cajal (ICCs) or their precursors. The vast majority of GISTs (75–85% of GIST) harbor KIT or PDGFRA mutations. A small percentage of GIST (about 10‐15%) do not harbor any of these driver mutations and have historically been called wild-type (WT). Among them, from 20% to 40% show loss of function of the succinate dehydrogenase complex (SDH), also defined as SDH‐deficient GIST. SDH-deficient GISTs display distinctive clinical and pathological features, and can be sporadic or associated with Carney triad or Carney-Stratakis syndrome. These tumors arise most frequently in the stomach with predilection to distal stomach and antrum, have a multi-nodular growth, display a histological epithelioid phenotype, and present frequent lympho-vascular invasion. Occurrence of lymph node metastases and indolent course are representative features of SDH-deficient GISTs. This subset of GIST is known for the immunohistochemical loss of succinate dehydrogenase subunit B (SDHB), which signals the loss of function of the entire SDH-complex. The overall aim of my PhD project consists of the comprehensive characterization of SDH deficient GIST. Throughout the project, clinical, molecular and cellular characterizations were performed using next-generation sequencing technologies (NGS), that has the potential to allow the identification of molecular patterns useful for the diagnosis and development of novel treatments. Moreover, while there are many different cell lines and preclinical models of KIT/PDGFRA mutant GIST, no reliable cell model of SDH-deficient GIST has currently been developed, which could be used for studies on tumor evolution and in vitro assessments of drug response. Therefore, another aim of this project was to develop a pre-clinical model of SDH deficient GIST using the novel technology of induced pluripotent stem cells (iPSC).
Resumo:
The work carried out in this thesis aims at: - studying – in both simulative and experimental methods – the effect of electrical transients (i.e., Voltage Polarity Reversals VPRs, Temporary OverVoltages TOVs, and Superimposed Switching Impulses SSIs) on the aging phenomena in HVDC extruded cable insulations. Dielectric spectroscopy, conductivity measurements, Fourier Transform Infra-Red FTIR spectroscopy, and space charge measurements show variation in the insulating properties of the aged Cross-Linked Polyethylene XLPE specimens compared to non-aged ones. Scission in XLPE bonds and formation of aging chemical bonds is also noticed in aged insulations due to possible oxidation reactions. The aged materials show more ability to accumulate space charges compared to non-aged ones. An increase in both DC electrical conductivity and imaginary permittivity has been also noticed. - The development of life-based geometric design of HVDC cables in a detailed parametric analysis of all parameters that affect the design. Furthermore, the effect of both electrical and thermal transients on the design is also investigated. - The intrinsic thermal instability in HVDC cables and the effect of insulation characteristics on the thermal stability using a temperature and field iterative loop (using numerical methods – Finite Difference Method FDM). The dielectric loss coefficient is also calculated for DC cables and found to be less than that in AC cables. This emphasizes that the intrinsic thermal instability is critical in HVDC cables. - Fitting electrical conductivity models to the experimental measurements using both models found in the literature and modified models to find the best fit by considering the synergistic effect between field and temperature coefficients of electrical conductivity.
Diffusive models and chaos indicators for non-linear betatron motion in circular hadron accelerators
Resumo:
Understanding the complex dynamics of beam-halo formation and evolution in circular particle accelerators is crucial for the design of current and future rings, particularly those utilizing superconducting magnets such as the CERN Large Hadron Collider (LHC), its luminosity upgrade HL-LHC, and the proposed Future Circular Hadron Collider (FCC-hh). A recent diffusive framework, which describes the evolution of the beam distribution by means of a Fokker-Planck equation, with diffusion coefficient derived from the Nekhoroshev theorem, has been proposed to describe the long-term behaviour of beam dynamics and particle losses. In this thesis, we discuss the theoretical foundations of this framework, and propose the implementation of an original measurement protocol based on collimator scans in view of measuring the Nekhoroshev-like diffusive coefficient by means of beam loss data. The available LHC collimator scan data, unfortunately collected without the proposed measurement protocol, have been successfully analysed using the proposed framework. This approach is also applied to datasets from detailed measurements of the impact on the beam losses of so-called long-range beam-beam compensators also at the LHC. Furthermore, dynamic indicators have been studied as a tool for exploring the phase-space properties of realistic accelerator lattices in single-particle tracking simulations. By first examining the classification performance of known and new indicators in detecting the chaotic character of initial conditions for a modulated Hénon map and then applying this knowledge to study the properties of realistic accelerator lattices, we tried to identify a connection between the presence of chaotic regions in the phase space and Nekhoroshev-like diffusive behaviour, providing new tools to the accelerator physics community.