679 resultados para CORROSION
Resumo:
Stainless steel is widely used in seawater reverse osmosis units (SWRO) for both good mechanical and corrosion resistance properties. However, many corrosion failures of stainless steel in SWRO desalination units have been reported. These failures may often be attributed to un-adapted stainless steel grade selection and/or to the particular aggressive seawater conditions in "warm" regions (high ambient temperature, severe biofouling, etc.). Cathodic protection (CP) is a well-known efficient system to prevent corrosion of metallic materials in seawater. It is successfully used in the oil and gas industry to protect carbon steel structures exposed in open-sea. However, the specific service conditions of SWRO units may seriously affect the efficiency of such anti-corrosion system (high flow rates, large stainless steel surfaces affected by biofouling, confinement limiting protective cathodic current flow, etc.). Hence, CP in SWRO units should be considered with special care and modeling appears as useful tool to assess an appropriate CP design. However, there is a clear lack of CP data that could be transposed to SWRO service conditions (i.e. stainless steel, effect of biofouling, high flow rate, etc.). From this background a Join Industry Program was initiated including laboratory exposures, field measurements in a full scale SWRO desalination plant, and modeling work using PROCOR software. The present paper reviews the main parameters affecting corrosion of stainless steel alloys in seawater reverse osmosis units. CP on specific stainless steel devices was investigated in order to assess its actual efficiency for SWRO units. Severe environmental conditions were intentionally used to promote corrosion on the tested stainless steel products in order to evaluate the efficiency of CP. The study includes a modeling work aiming at predicting and designing adapted CP protection to modeled stainless steel units. An excellent correlation between modeling work and field measurements was found.
Resumo:
Artigo licenciado sob uma Licença Creative Commons: https://creativecommons.org/licenses/by/4.0/
Resumo:
A research program focused on understanding the intergranular corrosion (IGC) and stress corrosion cracking (SCC) behavior of AA6005A aluminum extrusions is presented in this dissertation. The relationship between IGC and SCC susceptibility and the mechanisms of SCC in AA6005A extrusions were studied by examining two primary hypotheses. IGC susceptibility of the elongated grain structure in AA6005A exposed to low pH saltwater was found to depend primarily on the morphology of Cu-containing precipitates adjacent to the grain boundaries in the elongated grain structure. IGC susceptibility was observed when a continuous (or semi-continuous) film of Cu-containing phase was present along the grain boundaries. When this film coarsened to form discrete Cu-rich precipitates, no IGC was observed. The morphology of the Cu-rich phase depended on post-extrusion heat treatment. The rate of IGC penetration in the elongated grain structure of AA6005A-T4 and AA6005A-T6 extrusions was found to be anisotropic with IGC propagating most rapidly along the extrusion direction, and least rapidly along the through thickness direction. A simple 3-dimensional geometric model of the elongated grain structure was accurately described the observed IGC anisotropy, therefore it was concluded that the anisotropic IGC susceptibility in the elongated grain structure was primarily due to geometric elongation of the grains. The velocity of IGC penetration along all directions in AA6005A-T6 decreased with exposure time. Characterization of the local environment within simulated corrosion paths revealed that a pH gradient existed between the tip of the IGC path and the external environment. Knowledge of the local environment within an IGC path allowed development of a simple model based on Fick's first law that considered diffusion of Al3+ away from the tip of the IGC path. The predicted IGC velocity agreed well with the observed IGC velocity, therefore it was determined that diffusion of Al3+ was the primary factor in determining the velocity of IGC penetration. The velocity of crack growth in compact tensile (CT) specimens of AA6005A-T6 extrusion exposed to 3.5% NaCl at pH = 1.5 was nearly constant over a range of applied stress intensities, exposure times, and crack lengths. The crack growth behavior of CT specimens of AA6005A-T6 extrusion exposed to a solution of 3.5% NaCl at pH = 2.0 exhibited similar behavior, but the crack velocity was ~10.5X smaller than that those exposed to a solution at pH =1.5. Analysis of the local stress state and polarization behavior at the crack tip predicted that increasing the pH of the bulk solution from 1.5 to 2.0 would decrease the corrosion current density at the crack tip by approximately 11.8X. This predicted decrease in corrosion current density was in reasonable agreement with the observed decrease in SCC velocity associated with increasing the solution pH from 1.5 to 2.0. The agreement between the predicted and observed SCC velocities suggested that the electrochemical reactions controlling SCC in AA6005A-T6 extrusions are ultimately controlled by the pH gradient that exists between the crack tip and external environment.
Resumo:
Deterioration phenomena occurring on outdoor cultural heritage have been the subject of several studies, but relatively few works investigated the specific role of Particulate Matter (PM) in the corrosion of metals. This topic is really complex and, besides field exposures, accelerated ageing tests are also necessary to isolate and understand deterioration mechanisms due to PM. For this reason, the development of a methodology that allows to reproduce and analyze the effect of PM on alloys through accelerated ageing in climatic chamber has been started. On quaternary bronze specimens, single salts and a mix of them were deposited via two deposition methods: dry (directly depositing the salt on the surface) and wet (dropping a salt solution and drying it), simulating the initial chemical activation of the salts by RH% variations or by raindrops, respectively. Then, to better mimic the composition of real PM, a mixture containing a soluble salts, a mineral, a black carbon and an organic fraction was formulated and spread on the samples. The samples were placed in a climatic chamber and exposed to cyclic variations of T and RH for three weeks. The ageing cycles were set according to predictions on salt deliquescence/recrystallization through E-AIM model and to the evaluation of regional climatic data. The surface evolution was followed by SEM-EDX, Raman, AT-IR and UV-Vis Spectrophotometry. At the end of the test, mass losses were determined and corroded metals removed by pickling were analyzed by AAS. On the basis of the obtained results, the tested procedures seem to be promising in accelerating and mimicking realistic corrosion phenomena, as under the selected conditions, corrosion products typically found at different exposure time (from days to years) on outdoor bronzes were able to progressively form and evolve. Moreover, the two deposition modes simulating different condition of chemical activation of PM deposits allow to obtain complementary information.
Resumo:
The atmospheric corrosion of modern and historic alloys used in cultural heritage has been investigated by applying specific accelerated ageing methods. Three main research lines were carried out, involving different materials. In the first part, the atmospheric corrosion of a modern Cu-3Si-1Mn bronze was investigated through accelerated ageing tests simulating outdoor runoff conditions. The corrosion processes were evaluated through different analyses, and the results obtained were compared to those of a traditional quaternary bronze. The second line was carried out to characterise historic aluminium alloys used in aeronautics to develop and apply innovative protection strategies for their conservation. Historic wrecks were identified and characterised through micro and macroscale observations. Moreover, accelerated ageing tests were performed on both historic and modern alloys to compare their behaviour and select the best modern substrate to be used for the development of effective coatings. The third research line aimed to develop accelerate sampling and ageing methods to investigate the role of particulate matter (PM) in the atmospheric corrosion of bronzes and metals in general. The first approach consisted in the fine-tuning of an efficient accelerated method for ambient PM sampling on bronze specimens followed by their accelerated ageing, in order to establish a correlation between the PM and the substrate’s corrosion. After the accelerated ageing of the specimens, the corrosion was evaluated by surface characterisation and correlated to the PM features. The second approach consisted in the development of a synthetic PM formulation and of an artificial deposition method, which was performed by spraying mixtures containing the main PM inorganic fractions on a G-85 bronze with an airbrush. The deposition efficiency was assessed, and the effect of synthetic PM on the bronze corrosion was evaluated. The results were compared to those obtained by ambient PM deposition.
Resumo:
The gravimetric and electrochemical tests are the most common techniques used in determining the corrosion rate. However, the use of electrochemical polarization is limited to electrolytes with sufficient conductivity for which Tafel curves are linear. In this study, we investigated a technique in which working microelectrodes of AISI 1020 steel were used to obtain the Tafel curves in diesel oil. The strategy was to reduce the electrode area and hence the ohmic drop. The diameter of the microelectrode was reduced to a value where the compensation of the Tafel curves became unnecessary. The results showed that for electrodes with diameters below 50 μm, the ohmic drop tends to a minimum and independent of the microelectrode diameter.
Resumo:
Removable partial dentures (RPD) demand specific hygienic cleaning and the combination of brushing with immersion in chemical solutions has been the most recommended method for control of biofilm. However, the effect of the cleansers on metallic components has not been widely investigated. This study evaluated the effect of different cleansers on the surface of RPD. Five disc specimens (12 mm x 3 mm metallic disc centered in a 38 x 18 x 4 mm mould filled with resin) were obtained for each experimental situation: 6 solutions [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) control] and 2 Co-Cr alloys [DeguDent (DD) and VeraPDI (VPDI)] were used for each experimental situation. A 180-day immersion was simulated and the measurements of roughness (Ra, µm) of metal and resin were analyzed using 2-way ANOVA and Tukey’s test. The surface changes and tarnishes were examined with a scanning electronic microscopy (SEM). In addition, energy dispersive x-ray spectrometry (EDS) analysis was carried out at representative areas. Visually, NaOCl and MI specimens presented surface tarnishes. The roughness of materials was not affected by the solutions (p>0.05). SEM images showed that NaOCl and MI provided surface changes. EDS analysis revealed the presence of oxygen for specimens in contact with both MI and NaOCl solutions, which might suggest that the two solutions promoted the oxidation of the surfaces, thus leading to spot corrosion. Within the limitations of this study, it may be concluded that the NaOCl and MI may not be suitable for cleaning of RPD.
Resumo:
This study aimed at comparing amounts of nickel (Ni) and chromium (Cr) released from brackets from different manufacturers in simulated oral environments. 280 brackets were equally divided into 7 groups according to manufacturer. 6 groups of brackets were stainless steel, and 1 group of brackets was made of a cobalt-chromium alloy with low Ni content (0.5%). International standard ISO 10271/2001 was applied to provide test methods. Each bracket was immersed in 0.5 ml of synthetic saliva (SS) or artificial plaque fluid (PF) over a period of 28 days at 37ºC. Solutions were replaced every 7 days, and were analyzed by spectrometry. The Kruskal-Wallis test was applied. Amounts of Ni release in SS (µg L-1 per week) varied between groups from "bellow detection limits" to 694, and from 49 to 5,948.5 in PF. The group of brackets made of cobalt-chromium alloy, with the least nickel content, did not release the least amounts of Ni. Amounts of Cr detected in SS and in PF (µg L-1 per week) were from 1 to 10.4 and from 50.5 to 8,225, respectively. It was therefore concluded that brackets from different manufacturers present different corrosion behavior. Further studies are necessary to determine clinical implications of the findings.
Resumo:
Copper electrode can be used for determination of complexing compounds through complexation reactions between Cu(II) and the analites. In this work some studies with three compounds were performed: glycine (precursor of glyphosate synthesis), herbicide glyphosate and aminomethylphosphonic acid (main metabolite of glyphosate). These compounds are complexing agents for Cu electrodes. Through simple experiments (cyclic voltammetry and corrosion studies) the applicability of the copper electrode as electrochemical sensor for complexing compounds in flow systems was presented.