873 resultados para COMPACT GROUPS
Resumo:
Additions of lactams, imides, (S)-4-benzyl-1,3-oxazolidin-2-one, 2-pyridone, pyrimidine-2,4-diones (AZT derivatives), or inosines to the electron-deficient triple bonds of methyl propynoate, tert-butyl propynoate, 3-butyn-2-one, N-propynoylmorpholine, or N-methoxy-N-methylpropynamide in the presence of many potential catalysts were examined. DABCO and, second, DMAP appeared to be the best (highest reaction rates and E/Z ratios), while RuCl3, RuClCp*(PPh3)2, AuCl, AuCl(PPh3), CuI, and Cu2(OTf)2 were incapable of catalyzing such additions. The groups incorporated (for example, the 2-(methoxycarbonyl)ethenyl group that we name MocVinyl) serve as protecting groups for the above-mentioned heterocyclic CONH or CONHCO moieties. Deprotections were accomplished via exchange with good nucleophiles: the 1-dodecanethiolate anion turned out to be the most general and efficient reagent, but in some particular cases other nucleophiles also worked (e.g., MocVinyl-inosines can be cleaved with succinimide anion). Some structural and mechanistic details have been accounted for with the help of DFT and MP2 calculations.
Resumo:
Travaux effectués dans le cadre de l'étude "Case Mix" menée par l'Institut universitaire de médecine sociale et préventive de Lausanne et le Service de la santé publique et de la planification sanitaire du canton de Vaud, en collaboration avec les cantons de Berne, Fribourg, Genève, Jura, Neuchâtel, Soleure, Tessin et Valais
Resumo:
Cognitive radio is a wireless technology aimed at improvingthe efficiency use of the radio-electric spectrum, thus facilitating a reductionin the load on the free frequency bands. Cognitive radio networkscan scan the spectrum and adapt their parameters to operate in the unoccupiedbands. To avoid interfering with licensed users operating on a givenchannel, the networks need to be highly sensitive, which is achieved byusing cooperative sensing methods. Current cooperative sensing methodsare not robust enough against occasional or continuous attacks. This articleoutlines a Group Fusion method that takes into account the behavior ofusers over the short and long term. On fusing the data, the method is basedon giving more weight to user groups that are more unanimous in their decisions.Simulations have been performed in a dynamic environment withinterferences. Results prove that when attackers are present (both reiterativeor sporadic), the proposed Group Fusion method has superior sensingcapability than other methods.
Resumo:
The complex chemical and physical nature of combustion and secondary organic aerosols (SOAs) in general precludes the complete characterization of both bulk and interfacial components. The bulk composition reveals the history of the growth process and therefore the source region, whereas the interface controls--to a large extent--the interaction with gases, biological membranes, and solid supports. We summarize the development of a soft interrogation technique, using heterogeneous chemistry, for the interfacial functional groups of selected probe gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, O(3), NO(2)] of different reactivity. The technique reveals the identity and density of surface functional groups. Examples include acidic and basic sites, olefinic and polycyclic aromatic hydrocarbon (PAH) sites, and partially and completely oxidized surface sites. We report on the surface composition and oxidation states of laboratory-generated aerosols and of aerosols sampled in several bus depots. In the latter case, the biomarker 8-hydroxy-2'-deoxyguanosine, signaling oxidative stress caused by aerosol exposure, was isolated. The increase in biomarker levels over a working day is correlated with the surface density N(i)(O3) of olefinic and/or PAH sites obtained from O(3) uptakes as well as with the initial uptake coefficient, γ(0), of five probe gases used in the field. This correlation with γ(0) suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.
Resumo:
Additions of lactams, imides, (S)-4-benzyl-1,3-oxazolidin-2-one, 2-pyridone, pyrimidine-2,4-diones (AZT derivatives), or inosines to the electron-deficient triple bonds of methyl propynoate, tert-butyl propynoate, 3-butyn-2-one, N-propynoylmorpholine, or N-methoxy-N-methylpropynamide in the presence of many potential catalysts were examined. DABCO and, second, DMAP appeared to be the best (highest reaction rates and E/Z ratios), while RuCl3, RuClCp*(PPh3)2, AuCl, AuCl(PPh3), CuI, and Cu2(OTf)2 were incapable of catalyzing such additions. The groups incorporated (for example, the 2-(methoxycarbonyl)ethenyl group that we name MocVinyl) serve as protecting groups for the above-mentioned heterocyclic CONH or CONHCO moieties. Deprotections were accomplished via exchange with good nucleophiles: the 1-dodecanethiolate anion turned out to be the most general and efficient reagent, but in some particular cases other nucleophiles also worked (e.g., MocVinyl-inosines can be cleaved with succinimide anion). Some structural and mechanistic details have been accounted for with the help of DFT and MP2 calculations.
Resumo:
The synthesis of various polycyclic systems containing a C3aNi bond between a hexahydropyrrolo[2,3-b]indole and an indole tryptophan is described here. A series of experiments were performed to determine the best combination of five orthogonal protecting groups and the best reaction conditions for formation of said bond, which is a common feature among many recently discovered marine natural products.
Resumo:
In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.
Resumo:
Kahalalide compounds are peptides that are isolated from a Hawaiian herbivorous marine species of mollusc, Elysia rufescens, and its diet, the green alga Bryopsis sp. Kahalalide F and its synthetic analogues are the most promising compounds of the Kahalalide family because they show anti-tumoral activity. Linear solid-phase syntheses of Kahalalide F have been reported. Here we describe several new improved synthetic routes based on convergent approaches with distinct orthogonal protection schemes for the preparation of Kahaladide analogues. These strategies allow a better control and characterization of the intermediates because more reactions are performed in solution. Five derivatives of Kahalalide F were synthesized using several convergent approaches.
Resumo:
Thermal energy storage (TES) can increase the thermal energy effieresa, of a process by reusing the waste heat from industrial process, solar energy or other sources. There are different ways to store thermal energy: by sensible heat, by latest heat, by sorption process or by chemical reaction. This thesrs provides a-state-of-the-art review of the experimental performance of TES systems based on solid gas sorption process and chemical reactions. The importance of theses processes is that provides a heat loss free storage system with a high energy density.
Resumo:
The changing business environment demands that chemical industrial processes be designed such that they enable the attainment of multi-objective requirements and the enhancement of innovativedesign activities. The requirements and key issues for conceptual process synthesis have changed and are no longer those of conventional process design; there is an increased emphasis on innovative research to develop new concepts, novel techniques and processes. A central issue, how to enhance the creativity of the design process, requires further research into methodologies. The thesis presentsa conflict-based methodology for conceptual process synthesis. The motivation of the work is to support decision-making in design and synthesis and to enhance the creativity of design activities. It deals with the multi-objective requirements and combinatorially complex nature of process synthesis. The work is carriedout based on a new concept and design paradigm adapted from Theory of InventiveProblem Solving methodology (TRIZ). TRIZ is claimed to be a `systematic creativity' framework thanks to its knowledge based and evolutionary-directed nature. The conflict concept, when applied to process synthesis, throws new lights on design problems and activities. The conflict model is proposed as a way of describing design problems and handling design information. The design tasks are represented as groups of conflicts and conflict table is built as the design tool. The general design paradigm is formulated to handle conflicts in both the early and detailed design stages. The methodology developed reflects the conflict nature of process design and synthesis. The method is implemented and verified through case studies of distillation system design, reactor/separator network design and waste minimization. Handling the various levels of conflicts evolve possible design alternatives in a systematic procedure which consists of establishing an efficient and compact solution space for the detailed design stage. The approach also provides the information to bridge the gap between the application of qualitative knowledge in the early stage and quantitative techniques in the detailed design stage. Enhancement of creativity is realized through the better understanding of the design problems gained from the conflict concept and in the improvement in engineering design practice via the systematic nature of the approach.
Resumo:
BACKGROUND: Twelve-step mutual-help groups (TMGs) are among the most available forms of support for homeless individuals with alcohol problems. Qualitative research, however, has suggested that this population often has negative perceptions of these groups, which has been shown to be associated with low TMG attendance. It is important to understand this population's perceptions of TMGs and their association with alcohol outcomes to provide more appropriate and better tailored programming for this multiply affected population. The aims of this cross-sectional study were to (a) qualitatively examine perception of TMGs in this population and (b) quantitatively evaluate its association with motivation, treatment attendance and alcohol outcomes. METHODS: Participants (N=62) were chronically homeless individuals with alcohol problems who received single-site Housing First within a larger evaluation study. Perceptions of TMGs were captured using an open-ended item. Quantitative outcome variables were created from assessments of motivation, treatment attendance and alcohol outcomes. RESULTS: Findings indicated that perceptions of TMGs were primarily negative followed by positive and neutral perceptions, respectively. There were significant, positive associations between perceptions of TMGs and motivation and treatment attendance, whereas no association was found for alcohol outcomes. CONCLUSIONS: Although some individuals view TMGs positively, alternative forms of help are needed to engage the majority of chronically homeless individuals with alcohol problems.