957 resultados para COBALT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the first one-dimensional hetero-metallic compound containing thiocyanate as bridging ligands,{[Cu(cyclam)][Co(NCS)4]}n, has been determined, togetherwith a preliminary study of the magnetic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• Background and Aims The uptake, translocation and redistribution of the heavy metals zinc, manganese, nickel, cobalt and cadmium are relevant for plant nutrition as well as for the quality of harvested plant products. The long-distance transport of these heavy metals within the root system and the release to the shoot in young wheat (Triticum aestivum ‘Arina’) plants were investigated. • Methods After the application of 65Zn, 54Mn, 63Ni, 57Co and 109Cd for 24 h to one seminal root (the other seminal roots being excised) of 54-h-old wheat seedlings, the labelled plants were incubated for several days in hydroponic culture on a medium without radionuclides. • Key Results The content of 65Zn decreased quickly in the labelled part of the root. After the transfer of 65Zn from the roots to the shoot, a further redistribution in the phloem from older to younger leaves was observed. In contrast to 65Zn, 109Cd was released more slowly from the roots to the leaves and was subsequently redistributed in the phloem to the youngest leaves only at trace levels. The content of 63Ni decreased quickly in the labelled part of the root, moving to the newly formed parts of the root system and also accumulating transiently in the expanding leaves. The 54Mn content decreased quickly in the labelled part of the root and increased simultaneously in leaf 1. A strong retention in the labelled part of the root was observed after supplying 57Co. • Conclusions The dynamics of redistribution of 65Zn, 54Mn, 63Ni, 57Co and 109Cd differed considerably. The rapid redistribution of 63Ni from older to younger leaves throughout the experiment indicated a high mobility in the phloem, while 54Mn was mobile only in the xylem and 57Co was retained in the labelled root without being loaded into the xylem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phloem mobility of heavy metals is relevant to the redistribution of micronutrients and pollutants and, ultimately, to the quality of harvested plant parts. The relative mobility in wheat may vary considerably between different cations. In the study reported here, radio-labeled nickel (Ni), cobalt (Co), manganese (Mn), zinc (Zn) and cadmium (Cd) were introduced into either intact young winter wheat (Triticum aestivum L. cv. Arina) via a leaf flap, or detached maturing shoots via the cut stem. Elements fed into the lamina of the second leaf of 21-day-old plants were translocated to the younger (expanding) leaves and to the roots but not or only in trace amounts to the first (already fully expanded) leaf. The 63Ni and 65Zn were exported more rapidly compared with the other heavy metals. Most of 54Mn was retained in the originally labeled leaf. The peduncle of some maturing shoots was steam-girdled below the ear to distinguish between xylem and phloem transport. This phloem interruption reduced the content of 63Ni in the ear to about 25%. Intermediate effects were observed for 65Zn, 57Co, and 109Cd. Total 54Mn accumulation in the ear was hardly affected by steam-girdling, indicating a transport of this element within the xylem to the ear. These results suggest that the relative phloem mobility of Ni and Zn in young wheat plants and in maturing wheat shoots is higher than the mobility of Co and Cd, whereas the mobility of Mn is very low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detached wheat shoots (ear with peduncle and flag leaf) were incubated for 4 d in a solution containing 1 mM RbCl and 1 mM SrCl2 as well as 10, 40 or 160 µM NiCl2 and CoCl2. The phloem of some plants was interrupted by steam-girdling the stem below the ear to distinguish between xylem and phloem transport. The phloem-immobile Sr flowed mainly to the leaf lamina and to the glumes via the xylem. The Sr transport was not sensitive to steam-girdling. In contrast, the phloem-mobile Rb accumulated during the incubation time mainly in the stem and the leaf sheath. The Rb transport to the grains was impaired by steam-girdling as well as by elevated Ni and Co concentrations in the incubation solution indicating that Rb was transported via the phloem to the maturing grains and that this transport was affected by the heavy metals. Ni was removed more efficiently from the xylem in the peduncle than Co (but far less efficiently than Rb). It became evident that the two heavy metals can also be transferred from the xylem to the phloem in the stem of wheat and reach the maturing grains via the phloem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt, nickel and strontium were introduced via flaps into leaf laminas or into the stem of maturing, intact winter wheat (Triticum aestivum L., cv. `Arina') grown under natural conditions in a field. Long-distance transport of these elements and the influence of the application date and of different application positions were investigated. The dry-matter accumulation in the grains was not markedly affected by the treatments as compared to untreated control plants. The phloem-immobile strontium served as a marker for the distribution of the xylem sap in the plants. After foliar application, nickel accumulated more rapidly and in higher quantities in the grains than cobalt. Therefore, nickel has a slightly better phloem mobility than cobalt. Regardless of the application date, a higher percentage of the two elements was transported from the flag leaf lamina than from the second or third lamina from the top to the grains. These results indicate that the leaf position is highly relevant for the transfer of the heavy metals investigated to the ear. Introduction into the stem led to a higher accumulation of nickel and cobalt in the grains than introduction into one of the leaves. An earlier feeding date caused a higher accumulation of nickel and cobalt in the grains when introduced into the stem. In contrast, no major differences between earlier and later feeding dates were detected when the elements were introduced into the leaves. Losses of the applied elements were detected during maturation and can be explained by leakage in the rain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A member of the Cation Diffusion Facilitator (CDF) family with high sequence similarity to DmeF (Divalent metal efflux) from Cupridavirus metallidurans was identified in Rhizobium leguminosarum bv. viciae UPM1137. The R. leguminosarum dmeF mutant strain was highly sensitive to Co2+ and moderately sensitive to Ni2+, but its tolerance to other metals such as Zn2+, Cu2+ or Mn2+ was unaffected. An open reading frame located upstream of R. leguminosarum dmeF, designated dmeR, encodes a protein homologous to the nickel and cobalt regulator RcnR from E.coli. Expression of the dmeRF operon was induced by nickel and cobalt ions in free-living cells, likely by alleviating DmeR-mediated transcriptional repression of the operon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metals such as Fe, Cu, Mn, Ni, or Co are essential nutrients, as they are constitutive elements of a significant fraction of cell proteins. Such metals are present in the active site of many enzymes, and also participate as structural elements in different proteins. From a chemical point of view, metals have a defined order of affinity for binding, designated as the Irving-Williams series (Irving and Williams, 1948) Mg2+ menor que Mn2+ menor que Fe2+ menor que Co2+ menor que Ni2+ menor que Cu2+mayor queZn2+ Since cells contain a high number of different proteins harbouring different metal ions, a simplistic model in which proteins are synthesized and metals imported into a ?cytoplasmic soup? cannot explain the final product that we find in the cell. Instead we need to envisage a complex model in which specific ligands are present in definite amounts to leave the right amounts of available metals and protein binding sites, so specific pairs can bind appropriately. A critical control on the amount of ligands and metal present is exerted through specific metal-responsive regulators able to induce the synthesis of the right amount of ligands (essentially metal binding proteins), import and efflux proteins. These systems are adapted to establish the metal-protein equilibria compatible with the formation of the right metalloprotein complexes. Understanding this complex network of interactions is central to the understanding of metal metabolism for the synthesis of metalloenzymes, a key topic in the Rhizobium-legume symbiosis. In the case of the Rhizobium leguminosarum bv viciae (Rlv) UPM791 -Pisum sativum symbiotic system, the concentration of nickel in the plant nutrient solution is a limiting factor for hydrogenase expression, and provision of high amounts of this element to the plant nutrient solution is required to ensure optimal levels of enzyme synthesis (Brito et al., 1994).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In prokaryotes, nickel is an essential element participating in the structure of enzymes involved in multiple cellular processes. Nickel transport is a challenge for microorganisms since, although essential, high levels of this metal inside the cell are toxic. For this reason, bacteria have developed high-affinity nickel transporters as well as nickel-specific detoxification systems. Ultramafic soils, and soils contaminated with heavy metals are excellent sources of nickel resistant bacteria. Molecular analysis of strains isolated in the habitats has revealed novel genetic systems involved in adaptation to such hostile conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magnetic permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the Schiff-base complex [Co(acetylacetonate-ethylenediimine)(NH3)2]+ with metmyoglobin at pH 6.5 yields a partially folded protein containing six Co(III) complexes. Although half of its α-helical secondary structure is retained, absorption and CD spectra indicate that the tertiary structure in both B-F and AGH domains is disrupted in the partially folded protein. In analogy to proton-induced unfolding, it is likely that the loss of tertiary structure is triggered by metal-ion binding to histidines. Cobalt(III)-induced unfolding of myoglobin is unique in its selectivity (other proteins are unaffected) and in allowing the isolation of the partially folded macromolecule (the protein does not refold or aggregate upon removal of free denaturant).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc finger domains are structures that mediate sequence recognition for a large number of DNA-binding proteins. These domains consist of sequences of amino acids containing cysteine and histidine residues tetrahedrally coordinated to a zinc ion. In this report, we present a means to selectively inhibit a zinc finger transcription factor with cobalt(III) Schiff-base complexes. 1H NMR spectroscopy confirmed that the structure of a zinc finger peptide is disrupted by axial ligation of the cobalt(III) complex to the nitrogen of the imidazole ring of a histidine residue. Fluorescence studies reveal that the zinc ion is displaced from the model zinc finger peptide in the presence of the cobalt complex. In addition, gel-shift and filter-binding assays reveal that cobalt complexes inhibit binding of a complete zinc finger protein, human transcription factor Sp1, to its consensus sequence. Finally, a DNA-coupled conjugate of the cobalt complexes selectively inhibited Sp1 in the presence of several other transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upon photolysis at 355 nm, dioxygen is released from a (mu-peroxo)(mu-hydroxo)bis[bis(bipyridyl)cobalt-(III)] complex in aqueous solutions and at physiological pH with a quantum yield of 0.04. The [Co(bpy)2(H2O)2]2+ (bpy = bipyridyl) photoproduct was generated on a nanosecond or faster time scale as determined by time-resolved optical absorption spectroscopy. A linear correspondence between the spectral changes and the oxygen production indicates that O2 is released on the same time scale. Oxyhemoglobin was formed from deoxyhemoglobin upon photodissociation of the (mu-peroxo) (mu-hydroxo)bis[bis(bipyridyl)cobalt(III)] complex, verifying that dioxygen is a primary photoproduct. This complex and other related compounds provide a method to study fast biological reactions involving O2, such as the reduction of dioxygen to water by cytochrome oxidase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using partial amino acid sequence data derived from porcine methionyl aminopeptidase (MetAP; methionine aminopeptidase, peptidase M; EC 3.4.11.18), a full-length clone of the homologous human enzyme has been obtained. The cDNA sequence contains 2569 nt with a single open reading frame corresponding to a protein of 478 amino acids. The C-terminal portion representing the catalytic domain shows limited identity with MetAP sequences from various prokaryotes and yeast, while the N terminus is rich in charged amino acids, including extended strings of basic and acidic residues. These highly polar stretches likely result in the spuriously high observed molecular mass (67 kDa). This cDNA sequence is highly similar to a rat protein, termed p67, which was identified as an inhibitor of phosphorylation of initiation factor eIF2 alpha and was previously predicted to be a metallopeptidase based on limited sequence homology. Model building established that human MetAP (p67) could be readily accommodated into the Escherichia coli MetAP structure and that the Co2+ ligands were fully preserved. However, human MetAP was found to be much more similar to a yeast open reading frame that differed markedly from the previously reported yeast MetAP. A similar partial sequence from Methanothermus fervidus suggests that this p67-like sequence is also found in prokaryotes. These findings suggest that there are two cobalt-dependent MetAP families, presently composed of the prokaryote and yeast sequences (and represented by the E. coli structure) (type I), on the one hand, and by human MetAP, the yeast open reading frame, and the partial prokaryotic sequence (type II), on the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysts consisting of cobalt and nickel impregnated on magnetite have been prepared, characterized and used for the hydroacylation reaction of different azodicarboxylate compounds with aldehydes, using nearly stoichiometric amounts of both reagents in only 3 h. Furthermore, this reaction has been conducted with the smallest amount of catalyst. The cobalt catalyst is stable enough to be removed by magnetic decantation and recycled ten-fold without any detrimental effect on the results.