935 resultados para CLASSIC ARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the molecular basis for the clinical phenotype of incomplete penetrance of familial retinoblastoma, we have examined the functional properties of three RB mutations identified in the germ line of five different families with low penetrance. RB mutants isolated from common adult cancers and from classic familial retinoblastoma (designated as classic RB mutations) are unstable and generally do not localize to the nucleus, do not undergo cyclin-dependent kinase (cdk)-mediated hyperphosphorylation, show absent protein “pocket” binding activity, and do not suppress colony growth of RB(−) cells. In contrast, two low-penetrant alleles (661W and “deletion of codon 480”) retained the ability to localize to the nucleus, showed normal cdk-mediated hyperphosphorylation in vivo, exhibited a binding pattern to simian virus 40 large T antigen using a quantitative yeast two-hybrid assay that was intermediate between classic mutants (null) and wild-type RB, and had absent E2F1 binding in vitro. A third, low-penetrant allele, “deletion of RB exon 4,” showed minimal hyperphosphorylation in vivo but demonstrated detectable E2F1 binding in vitro. In addition, each low-penetrant RB mutant retained the ability to suppress colony growth of RB(−) tumor cells. These findings suggest two categories of mutant, low-penetrant RB alleles. Class 1 alleles correspond to promoter mutations, which are believed to result in reduced or deregulated levels of wild-type RB protein, whereas class 2 alleles result in mutant proteins that retain partial activity. Characterization of the different subtypes of class 2 low-penetrant genes may help to define more precisely functional domains within the RB product required for tumor suppression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-affinity (Kd = 1 × 10−9 M) anti-platelet GPIIIa has been isolated from serum immune complexes of immunologic thrombocytopenic HIV-1-infected patients (HIV-1-ITP). Affinity-purified anti-platelet antibody reacted with a recombinant GPIIIa-(1–200) and -(1–66) fusion peptide and with an 18-mer GPIIIa-(49–66) peptide but not with seven other GPIIIa peptides spanning the length of GPIIIa. Most of the anti-platelet antibody (≈85%) could be adsorbed to and eluted from a GPIIIa-(49–66) affinity column. Binding of antibody to platelets could be inhibited by GPIIIa-(49–66) or an equimolar peptide-albumin conjugate (IC50 = 2 μM). Sera from 7 control subjects and 10 classic autoimmune thrombocytopenic patients gave background reactivity with GPIIIa-(49–66). HIV-1-ITP sera from 16 patients reacted with a mean OD 6-fold greater than background (range, 4- to 9-fold). Serum anti-GPIIIa-(49–66) concentration correlated inversely with platelet count, R2 = 0.51, n = 31, P < 0.0001. Because mouse platelet GPIIIa-(49–66) has 83% homology with human GPIIIa and mouse monocytes contain Fc receptors for the human IgG1-κ/λ antibody, we determined the in vivo effect of human anti-GPIIIa on mouse platelets. Affinity-purified antibody, 25–50 μg given i.p., resulted in a precipitous drop in platelet count to 30% of baseline, with nadir at 4 hr and return to normal in 36 hr. No effect was noted with control IgG. Acute thrombocytopenia could be prevented or reversed by the injection of the GPIIIa-(49–66) albumin conjugate at zero time or 2 hr after antibody, respectively, but not with a scrambled peptide-albumin conjugate. Thus HIV-1-ITP patients have high-affinity anti-platelet GPIIIa against a major antigenic determinant, GPIIIa-(49–66), which correlates inversely with platelet count and induces thrombocytopenia in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence analysis based on multiple isolates representing essentially all genera and species of the classic family Volvocaeae has clarified their phylogenetic relationships. Cloned internal transcribed spacer sequences (ITS-1 and ITS-2, flanking the 5.8S gene of the nuclear ribosomal gene cistrons) were aligned, guided by ITS transcript secondary structural features, and subjected to parsimony and neighbor joining distance analysis. Results confirm the notion of a single common ancestor, and Chlamydomonas reinharditii alone among all sequenced green unicells is most similar. Interbreeding isolates were nearest neighbors on the evolutionary tree in all cases. Some taxa, at whatever level, prove to be clades by sequence comparisons, but others provide striking exceptions. The morphological species Pandorina morum, known to be widespread and diverse in mating pairs, was found to encompass all of the isolates of the four species of Volvulina. Platydorina appears to have originated early and not to fall within the genus Eudorina, with which it can sometimes be confused by morphology. The four species of Pleodorina appear variously associated with Eudorina examples. Although the species of Volvox are each clades, the genus Volvox is not. The conclusions confirm and extend prior, more limited, studies on nuclear SSU and LSU rDNA genes and plastid-encoded rbcL and atpB. The phylogenetic tree suggests which classical taxonomic characters are most misleading and provides a framework for molecular studies of the cell cycle-related and other alterations that have engendered diversity in both vegetative and sexual colony patterns in this classical family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite more than a century of debate, the evolutionary position of turtles (Testudines) relative to other amniotes (reptiles, birds, and mammals) remains uncertain. One of the major impediments to resolving this important evolutionary problem is the highly distinctive and enigmatic morphology of turtles that led to their traditional placement apart from diapsid reptiles as sole descendants of presumably primitive anapsid reptiles. To address this question, the complete (16,787-bp) mitochondrial genome sequence of the African side-necked turtle (Pelomedusa subrufa) was determined. This molecule contains several unusual features: a (TA)n microsatellite in the control region, the absence of an origin of replication for the light strand in the WANCY region of five tRNA genes, an unusually long noncoding region separating the ND5 and ND6 genes, an overlap between ATPase 6 and COIII genes, and the existence of extra nucleotides in ND3 and ND4L putative ORFs. Phylogenetic analyses of the complete mitochondrial genome sequences supported the placement of turtles as the sister group of an alligator and chicken (Archosauria) clade. This result clearly rejects the Haematothermia hypothesis (a sister-group relationship between mammals and birds), as well as rejecting the placement of turtles as the most basal living amniotes. Moreover, evidence from both complete mitochondrial rRNA genes supports a sister-group relationship of turtles to Archosauria to the exclusion of Lepidosauria (tuatara, snakes, and lizards). These results challenge the classic view of turtles as the only survivors of primary anapsid reptiles and imply that turtles might have secondarily lost their skull fenestration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high resolution, second-order central difference method for incompressible flows is presented. The method is based on a recent second-order extension of the classic Lax–Friedrichs scheme introduced for hyperbolic conservation laws (Nessyahu H. & Tadmor E. (1990) J. Comp. Physics. 87, 408-463; Jiang G.-S. & Tadmor E. (1996) UCLA CAM Report 96-36, SIAM J. Sci. Comput., in press) and augmented by a new discrete Hodge projection. The projection is exact, yet the discrete Laplacian operator retains a compact stencil. The scheme is fast, easy to implement, and readily generalizable. Its performance was tested on the standard periodic double shear-layer problem; no spurious vorticity patterns appear when the flow is underresolved. A short discussion of numerical boundary conditions is also given, along with a numerical example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The C-C chemokine receptor 5 (CCR5) plays a crucial role in facilitating the entry of macrophage-tropic strains of the HIV-1 into cells, but the mechanism of this phenomenon is completely unknown. To explore the role of CCR5-derived signal transduction in viral entry, we introduced mutations into two cytoplasmic domains of CCR5 involved in receptor-mediated function. Truncation of the terminal carboxyl-tail to eight amino acids or mutation of the highly conserved aspartate-arginine-tyrosine, or DRY, sequence in the second cytoplasmic loop of CCR5 effectively blocked chemokine-dependent activation of classic second messengers, intracellular calcium fluxes, and the cellular response of chemotaxis. In contrast, none of the mutations altered the ability of CCR5 to act as an HIV-1 coreceptor. We conclude that the initiation of signal transduction, the prototypic function of G protein coupled receptors, is not required for CCR5 to act as a coreceptor for HIV-1 entry into cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of this study challenge the widely held view that growth hormone (GH) acts only during the postnatal period. RNA phenotyping shows transcripts for the GH receptor and GH-binding protein in mouse preimplantation embryos of all stages from fertilized eggs (day 1) to blastocysts (day 4). An antibody specific to the cytoplasmic region of the GH receptor revealed receptor protein expression, first in two-cell embryos, the stage of activation of the embryonic genome (day 2), and in all subsequent stages. In cleavage-stage embryos this immunoreactivity was localized mainly to the nucleus, but clear evidence of membrane labeling was apparent in blastocysts. GH receptor immunoreactivity was also observed in cumulus cells associated with unfertilized oocytes but not in the unfertilized oocytes. The blastocyst receptor was demonstrated to be functional, exhibiting the classic bell-shaped dose–response curves for GH stimulation of both 3-O-methyl glucose transport and protein synthesis. Maximal stimulation of 40–50% was seen for both responses at less than 1 ng/ml recombinant GH, suggesting a role for maternal GH. However mRNA transcripts for GH were also detected from the morula stage (day 3) by using reverse transcription–PCR, and GH immunoreactivity was seen in blastocysts. These observations raise the possibility of a paracrine/autocrine GH loop regulating embryonic development in its earliest stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The snowshoe hare and the Canadian lynx in the boreal forests of North America show 9- to 11-year density cycles. These are generally assumed to be linked to each other because lynx are specialist predators on hares. Based on time series data for hare and lynx, we show that the dominant dimensional structure of the hare series appears to be three whereas that of the lynx is two. The three-dimensional structure of the hare time series is hypothesized to be due to a three-trophic level model in which the hare may be seen as simultaneously regulated from below and above. The plant species in the hare diet appear compensatory to one another, and the predator species may, likewise, be seen as an internally compensatory guild. The lynx time series are, in contrast, consistent with a model of donor control in which their populations are regulated from below by prey availability. Thus our analysis suggests that the classic view of a symmetric hare–lynx interaction is too simplistic. Specifically, we argue that the classic food chain structure is inappropriate: the hare is influenced by many predators other than the lynx, and the lynx is primarily influenced by the snowshoe hare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In distinction to single-stranded anticodons built of G, C, A, and U bases, their presumable double-stranded precursors at the first three positions of the acceptor stem are composed almost invariably of G-C and C-G base pairs. Thus, the “second” operational RNA code responsible for correct aminoacylation seems to be a (G,C) code preceding the classic genetic code. Although historically rooted, the two codes were destined to diverge quite early. However, closer inspection revealed that two complementary catalytic domains of class I and class II aminoacyl-tRNA synthetases (aaRSs) multiplied by two, also complementary, G2-C71 and C2-G71 targets in tRNA acceptors, yield four (2 × 2) different modes of recognition. It appears therefore that the core four-column organization of the genetic code, associated with the most conservative central base of anticodons and codons, was in essence predetermined by these four recognition modes of the (G,C) operational code. The general conclusion follows that the genetic code per se looks like a “frozen accident” but only beyond the “2 × 2 = 4” scope. The four primordial modes of tRNA–aaRS recognition are amenable to direct experimental verification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The irreversible proteolytic mechanism by which protease-activated receptor-1 (PAR1), the G protein-coupled receptor (GPCR) for thrombin, is activated raises the question of how it is shut off. Like classic GPCRs, activated PAR1 is rapidly phosphorylated and internalized, but unlike classic GPCRs, which recycle, internalized PAR1 is sorted to lysosomes. A chimeric PAR1 bearing the substance P receptor’s cytoplasmic carboxyl tail sequestered and recycled like wild-type substance P receptor. In cells expressing this chimera, signaling in response to the PAR1-activating peptide SFLLRN ceased as expected upon removal of this agonist. Strikingly, however, when the chimera was activated proteolytically by thrombin, signaling persisted even after thrombin was removed. This persistent signaling was apparently due to “resignaling” by previously activated receptors that had internalized and recycled back to the cell surface. Thus the cytoplasmic carboxyl tail of PAR1 specifies an intracellular sorting pattern that is linked to its signaling properties. In striking contrast to most GPCRs, sorting of activated PAR1 to lysosomes rather than recycling is critical for terminating PAR1 signaling—a trafficking solution to a signaling problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins containing the EF-hand Ca2+-binding motif, such as calmodulin and calcineurin B, function as regulators of various cellular processes. Here we focus on p22, an N-myristoylated, widely expressed EF-hand Ca2+-binding protein conserved throughout evolution, which was shown previously to be required for membrane traffic. Immunofluorescence studies show that p22 distributes along microtubules during interphase and mitosis in various cell lines. Moreover, we report that p22 associates with the microtubule cytoskeleton indirectly via a cytosolic microtubule-binding factor. Gel filtration studies indicate that the p22–microtubule-binding activity behaves as a 70- to 30-kDa globular protein. Our results indicate that p22 associates with microtubules via a novel N-myristoylation–dependent mechanism that does not involve classic microtubule-associated proteins and motor proteins. The association of p22 with microtubules requires the N-myristoylation of p22 but does not involve p22’s Ca2+-binding activity, suggesting that the p22–microtubule association and the role of p22 in membrane traffic are functionally related, because N-myristoylation is required for both events. Therefore, p22 is an excellent candidate for a protein that can mediate interactions between the microtubule cytoskeleton and membrane traffic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclophilin and FK506 binding protein (FKBP) accelerate cis–trans peptidyl-prolyl isomerization and bind to and mediate the effects of the immunosuppressants cyclosporin A and FK506. The normal cellular functions of these proteins, however, are unknown. We altered the active sites of FKBP12 and mitochondrial cyclophilin from the yeast Saccharomyces cerevisiae by introducing mutations previously reported to inactivate these enzymes. Surprisingly, most of these mutant enzymes were biologically active in vivo. In accord with previous reports, all of the mutant enzymes had little or no detectable prolyl isomerase activity in the standard peptide substrate-chymotrypsin coupled in vitro assay. However, in a variation of this assay in which the protease is omitted, the mutant enzymes exhibited substantial levels of prolyl isomerase activity (5–20% of wild-type), revealing that these mutations confer sensitivity to protease digestion and that the classic in vitro assay for prolyl isomerase activity may be misleading. In addition, the mutant enzymes exhibited near wild-type activity with two protein substrates, dihydrofolate reductase and ribonuclease T1, whose folding is accelerated by prolyl isomerases. Thus, a number of cyclophilin and FKBP12 “active-site” mutants previously identified are largely active but protease sensitive, in accord with our findings that these mutants display wild-type functions in vivo. One mitochondrial cyclophilin mutant (R73A), and also the wild-type human FKBP12 enzyme, catalyze protein folding in vitro but lack biological activity in vivo in yeast. Our findings provide evidence that both prolyl isomerase activity and other structural features are linked to FKBP and cyclophilin in vivo functions and suggest caution in the use of these active-site mutations to study FKBP and cyclophilin functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of neurons in the mammalian brain is determined by a balance between cell proliferation and programmed cell death. Recent studies indicated that Bcl-XL prevents, whereas Caspase-3 mediates, cell death in the developing nervous system, but whether Bcl-XL directly blocks the apoptotic function of Caspase-3 in vivo is not known. To examine this question, we generated bcl-x/caspase-3 double mutants and found that caspase-3 deficiency abrogated the increased apoptosis of postmitotic neurons but not the increased hematopoietic cell death and embryonic lethality caused by the bcl-x mutation. In contrast, caspase-3, but not bcl-x, deficiency changed the normal incidence of neuronal progenitor cell apoptosis, consistent with the lack of expression of Bcl-XL in the proliferative population of the embryonic cortex. Thus, although Caspase-3 is epistatically downstream to Bcl-XL in postmitotic neurons, it independently regulates apoptosis of neuronal founder cells. Taken together, these results establish a role of programmed cell death in regulating the size of progenitor population in the central nervous system, a function that is distinct from the classic role of cell death in matching postmitotic neuronal population with postsynaptic targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylketonuria (PKU), with its associated hyperphenylalaninemia (HPA) and mental retardation, is a classic genetic disease and the first to have an identified chemical cause of impaired cognitive development. Treatment from birth with a low phenylalanine diet largely prevents the deviant cognitive phenotype by ameliorating HPA and is recognized as one of the first effective treatments of a genetic disease. However, compliance with dietary treatment is difficult and when it is for life, as now recommended by an internationally used set of guidelines, is probably unrealistic. Herein we describe experiments on a mouse model using another modality for treatment of PKU compatible with better compliance using ancillary phenylalanine ammonia lyase (PAL, EC 4.3.1.5) to degrade phenylalanine, the harmful nutrient in PKU; in this treatment, PAL acts as a substitute for the enzyme phenylalanine monooxygenase (EC 1.14.16.1), which is deficient in PKU. PAL, a robust enzyme without need for a cofactor, converts phenylalanine to trans-cinnamic acid, a harmless metabolite. We describe (i) an efficient recombinant approach to produce PAL enzyme, (ii) testing of PAL in orthologous N-ethyl-N′-nitrosourea (ENU) mutant mouse strains with HPA, and (iii) proofs of principle (PAL reduces HPA)—both pharmacologic (with a clear dose–response effect vs. HPA after PAL injection) and physiologic (protected enteral PAL is significantly effective vs. HPA). These findings open another way to facilitate treatment of this classic genetic disease.