972 resultados para CITRATE PRECURSOR METHOD
Resumo:
This work presents the preparation and characterization of PZT ceramic obtained by the polymeric precursor method (PPM). The influence of the synthesis method on the grain size and the morphology are also object of study. The fabrication and characterization of composite films with 0-3 connectivity, immersing nanoparticles of PZT into the non-polar poly(vinylidene fluoride) -PVDF as the polymer matrix were presented. For comparison there are results obtained with composite samples made of ceramic particles unrecovered and recovered with a conducting polymer, the polyaniline (PAni).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work aims to synthesize the manganese and zinc ferrite, by the polymeric precursor method, in order to obtain materials with appropriate characteristics for the application in medical diagnosis techniques. The manganese and zinc ferrite powders with the composition of Mn(1-x)ZnxFe2O4, where x=0,23, were prepared and calcined in air at different times and temperatures. The X-ray diffraction (XRD) data show that the sample calcined at 400°C crystallize as ferrite (monophase), but in an inverted spinel structure (high content of iron occupying manganese tetrahedral site and manganese occupying the iron octahedral site). The samples calcined at temperatures between 600°C and 900°C shows the secondary phase of hematite and the sample calcined at 1100oC shows to be monophase in ferrite with normal spinel structure. The monophase powders of ferrite showed a reduction in the surface area and an increasing in the pore size for higher calcination temperatures. The magnetic analysis show that the sample calcined at 400°C presents satisfactory magnetization at room temperature, however, it behaves as diamagnetic material at low temperatures (10K). The powder containing hematite, without the partial substitution of iron ions by manganese, showed to have low transition temperature, and consequently low magnetization at room temperature. The hematite, when partially substituted, provides materials with irregular magnetization at the saturation region. The powder calcined at 1100°C shows high magnetization either at room temperature or low temperature (10K)
Resumo:
Bi3NbO7 thin films were prepared by the polymeric precursor method. The precursor solutions were prepared with excess of bismuth ranging from 0% to 10% and the pH was controlled to be maintained between 8 and 9. This control was done by adding to the solution niobium and ethylene glycol. The final solution was clear and free of precipitation. After obtaining the precursor solution, has begun the process of characterization of powders with thermogravimetry (TG), differential thermal analysis and X-ray analysis (XRD). The films were obtained by the polymeric precursors, the method is advantageous because it is simple, and low cost involves steps and controlled stoichiometry. The films were annealed and characterized by XRD and SEM and also characterized according to their dialectics properties. We observed that the best results were obtained when the film is thermally at 800 ° C for two hours and 860 ° C for two hour. Under these conditions we obtain Bi3NbO7 thin films with good homogeneity, uniform distribution of the grains, but with the formation of secondary phase, which does not occur in treatments with lower temperature. The dielectric characterization showed that the produced film showed good characteristics with high dielectric constant and low loss
Resumo:
Technology always advances and thus the device miniaturization and improved performance, besides multifunctionality, they become extremely necessary. A wave of research on the area tends to grow in number and importance in today's market, it is necessary to search for new materials, new applicability of the existing ones and new processes for increasingly cheaper costs. Dielectric materials are considered a key element in this sector being the main electrical properties its high dielectric constant and low dielectric loss. The Polymeric Precursor Method appears as a good alternative because is a low cost, simple process with controlled stoichiometry. In this method, two steps were performed. In a first step, the precursor solution was decomposed into powders and in a second step the precursor solution was converted in thin films. In this work, was used the polymeric precursor methods to get thin films where they were heat treated and characterized by XRD, SEM and AFM. We have obtained Bi3NbO7 thin films with good homogeneity and uniform distribution of grains were noted. We observed that the best condition to obtain the tetragonal phase is annealing the film at high temperatures for a longer soaking time and with excess of bismuth. Several oxides electrodes were evaluated aiming to obtain textured dielectric thin films
Resumo:
The increasing demand for electro-electronic devices, with high performance and multi-functional and the rapid advances of the nanotechnology require the development of new methods and techniques for the production and characterization of nanostructure materials and phenomenological models to describe/to predict some of its properties. The demand for multifunctionality requires, at least, new materials, that can integrate ferroelectric and magnetic properties of high technological interest. Inside of this context, multiferroics material can be considered suitable to integrate two or more physical properties of high technological interest. It can also provides new challenges in the processes of synthesis of new materials, and development of new devices with controlling and simulation of its physical properties and modeling. For this Calcium (Ca)-doped bismuth ferrite (BiFeO3) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), polarization and piezoelectric measurements.In order to study the behavior and determine which are the most important parameters to achieve the optimal property to be applied to a multiferroic materials
Resumo:
A CaZrO3 (CZO) powder was prepared by the soft chemical, polymeric precursor method (PPM). The CZO crystalline structure was investigated by powder X-ray diffraction (XDR), Retvield Refinament data, Raman spectra and ultraviolet–visible absorption spectroscopy. A theoretical study was performed using a periodic quantum mechanical calculation (CRYSTAL09 program). The periodic model built for the crystalline CZO structure was consistent with the experimental data obtained from structural and electronic properties. These results show that the material has an orthorhombic structure with experimental and theoretical gap values of 5.7 eV and 6.2 eV, respectively. In this article, we discuss the hybridization process of the oxygen p-orbitals and of the zirconium d-orbitals and analyze their band structures and density of states (partial and total).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Low crystalline PZT powder samples were successfully synthesized using polymeric precursor method and slow decomposition steps. The polymeric resin precursor was thermal treated in a muffle type oven varying the temperature from 250 °C to 700 °C and the time from 3 to 24 hours in order to investigate the order/disorder mechanism toward the amorphous powders. Powder samples with low crystalline phases were obtained at lower temperatures and long time of thermal treatment, demonstrating a kinetic dependence for organic removal and a thermodynamic barrier for crystallization processes. Through XRD and FTIR spectroscopy characterizations the long time thermal treated samples showed to be composed of the solid solution of metal oxides in absent of organic matter, originating broad XRD peaks profiles and no carbonaceous bands in FTIR spectra. A Photoluminescence characterization showed that the peak emission is higher for disordered and homogeneous phases, which only can be reached through the long time of thermal treatment.