930 resultados para CFRP bars


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An innovative technique based on optical fibre sensing that allows continuous strain measurement has recently been introduced in structural health monitoring. Known as Brillouin Optical Time-Domain Reflectometry (BOTDR), this distributed optical fibre sensing technique allows measurement of strain along the full length (up to 10km) of a suitably installed optical fibre. Examples of recent implementations of BOTDR fibre optic sensing in piles are described in this paper. Two examples of distributed optical fibre sensing in piles are demonstrated using different installation techniques. In a load bearing pile, optical cables were attached along the reinforcing bars by equally spaced spot gluing to measure the axial response of pile to ground excavation induced heave and construction loading. Measurement of flexural behaviour of piles is demonstrated in the instrumentation of a secant piled wall where optical fibres were embedded in the concrete by simple endpoint clamping. Both methods have been verified via laboratory works. © 2009 IOS Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combination of light carbon fiber reinforced polymer (CFRP) composite materials with structurally efficient sandwich panel designs offers novel opportunities for ultralight structures. Here, pyramidal truss sandwich cores with relative densities ρ̄ in the range 1-10% have been manufactured from carbon fiber reinforced polymer laminates by employing a snap-fitting method. The measured quasi-static shear strength varied between 0.8 and 7.5 MPa. Two failure modes were observed: (i) Euler buckling of the struts and (ii) delamination failure of the laminates. Micro-buckling failure of the struts was not observed in the experiments reported here while Euler buckling and delamination failures occurred for the low (ρ̄≤1%) and high (ρ̄>1%) relative density cores, respectively. Analytical models for the collapse of the composite cores by these failure modes are presented. Good agreement between the measurements and predictions based on the Euler buckling and delamination failure of the struts is observed while the micro-buckling analysis over-predicts the measurements. The CFRP pyramidal cores investigated here have a similar mechanical performance to CFRP honeycombs. Thus, for a range of multi-functional applications that require an "open-celled" architecture (e.g. so that cooling fluid can pass through a sandwich core), the CFRP pyramidal cores offer an attractive alternative to honeycombs. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of a deployable structure which deploys from a compact bundle of six parallel bars to a rectangular ring is considered. The structure is a plane symmetric Bricard linkage. The internal mechanism is described in terms of its Denavit-Hartenberg parameters; the nature of its single degree of freedom is examined in detail by determining the exact structure of the system of equations governing its movement; a range of design parameters for building feasible mechanisms is determined numerically; and polynomial continuation is used to design rings with certain specified desirable properties. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study unsupervised learning in a probabilistic generative model for occlusion. The model uses two types of latent variables: one indicates which objects are present in the image, and the other how they are ordered in depth. This depth order then determines how the positions and appearances of the objects present, specified in the model parameters, combine to form the image. We show that the object parameters can be learnt from an unlabelled set of images in which objects occlude one another. Exact maximum-likelihood learning is intractable. However, we show that tractable approximations to Expectation Maximization (EM) can be found if the training images each contain only a small number of objects on average. In numerical experiments it is shown that these approximations recover the correct set of object parameters. Experiments on a novel version of the bars test using colored bars, and experiments on more realistic data, show that the algorithm performs well in extracting the generating causes. Experiments based on the standard bars benchmark test for object learning show that the algorithm performs well in comparison to other recent component extraction approaches. The model and the learning algorithm thus connect research on occlusion with the research field of multiple-causes component extraction methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the production and testing of an ortho-planar one-way micro-valve. The main advantages of such valves are that they are very compact and can be made from a single flat piece of material. A previous paper presents and discusses a micro-valve assembly based on a spider spring. The present paper focuses on the valve assembly process and the valve performance.. Several prototypes with a bore of 0.2 mm have been built using two manufacturing techniques (μEDM and stereo-lithography) and tested for pressures up to 7 bars. © 2008 International Federation for Information Processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quasi-static and dynamic responses of laminated beams of equal areal mass, made from monolithic CFRP and Ultra high molecular weight Polyethylene (UHMWPE), have been measured. The end-clamped beams were impacted at mid-span by metal foam projectiles to simulate localised blast loading. The effect of clamping geometry on the response was investigated by comparing the response of beams bolted into the supports with the response of beams whose ends were wrapped around the supports. The effect of laminate shear strength upon the static and dynamic responses was investigated by testing two grades of each of the CFRP and UHMWPE beams: (i) CFRP beams with a cured matrix and uncured matrix, and (ii) UHMWPE laminates with matrices of two different shear strengths. Quasi-static stretch-bend tests indicated that the load carrying capacity of the UHWMPE beams exceeds that of the CFRP beams, increases with diminishing shear strength of matrix, and increases when the ends are wrapped rather than through-bolted. The dynamic deformation mode of the beams is qualitatively different from that observed in the quasi-static stretch-bend tests. In the dynamic case, travelling hinges emanate from the impact location and propagate towards the supports; the beams finally fail by tensile fibre fracture at the supports. The UHMWPE beams outperform the CFRP beams in terms of a lower mid-span deflection for a given impulse, and a higher failure impulse. Also, the maximum attainable impulse increases with decreasing shear strength for both the UHMWPE and CFRP beams. The ranking of the beams for load carrying capacity in the quasi-static stretch-bend tests is identical to that for failure impulse in the impact tests. Thus, the static tests can be used to gauge the relative dynamic performances of the beams. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ballistic performance of clamped circular carbon fibre reinforced polymer (CFRP) and Ultra High Molecular Weight Polyethylene (UHMWPE) fibre composite plates of equal areal mass and 0/90 lay-up were measured and compared with that of monolithic 304 stainless steel plates. The effect of matrix shear strength upon the dynamic response was explored by testing: (i) CFRP plates with both a cured and uncured matrix and (ii) UHMWPE laminates with identical fibres but with two matrices of different shear strength. The response of these plates when subjected to mid-span, normal impact by a steel ball was measured via a dynamic high speed shadow moiré technique. Travelling hinges emanate from the impact location and travel towards the supports. The anisotropic nature of the composite plate results in the hinges travelling fastest along the fibre directions and this results in square-shaped moiré fringes in the 0/90 plates. Projectile penetration of the UHMWPE and the uncured CFRP plates occurs in a progressive manner, such that the number of failed plies increases with increasing velocity. The cured CFRP plate, of high matrix shear strength, fails by cone-crack formation at low velocities, and at higher velocities by a combination of cone-crack formation and communition of plies beneath the projectile. On an equal areal mass basis, the low shear strength UHMWPE plate has the highest ballistic limit followed by the high matrix shear strength UHMWPE plate, the uncured CFRP, the steel plate and finally the cured CFRP plate. We demonstrate that the high shear strength UHMWPE plate exhibits Cunniff-type ballistic limit scaling. However, the observed Cunniff velocity is significantly lower than that estimated from the laminate properties. The data presented here reveals that the Cunniff velocity is limited in its ability to characterise the ballistic performance of fibre composite plates as this velocity is independent of the shear properties of the composites: the ballistic limit of fibre composite plates increases with decreasing matrix shear strength for both CFRP and UHMWPE plates. © 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of an experimental and numerical investigation involving unstrengthened reinforced concrete (RC) T-beams and precracked RC T-beams strengthened in shear with prestressed carbon fiber-reinforced polymer (CFRP) straps are presented and discussed. The results provide insights into the influence of load history and beam depth on the structural behavior of both unstrengthened and strengthened beams. The strengthened beams exhibited capacity enhancements of 21.6 to 46% compared to the equivalent unstrengthened beams, demonstrating the potential effectiveness of the prestressed CFRP strap system. Nonlinear finite element (FE) predictions, which incorporated the load history, reproduced the observed experimental behavior but either underestimated or overestimated the post-cracking stiffness of the beams and strap strain at higher load levels. These limitations were attributed to the concrete shear models used in the FE analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the load at which FRPs debond from concrete beams using global-energy-balance-based fracture mechanics concepts, the single most important parameter is the fracture energy of the concrete-FRP interface, which is easy to define but difficult to determine. Debonding propagates in the narrow zone of concrete, between the FRP and the (tension) steel reinforcement bars in the beam, and the presence of nearby steel bars prevents the fracture process zone, which in concrete is normally extensive, from developing fully. The paper presents a detailed discussion of the mechanism of the FRP debonding, and shows that the initiation of debonding can be regarded as a Mode I (tensile) fracture in concrete, despite being loaded primarily in shear. It is shown that the incorporation of this fracture energy in the debonding model developed by the authors, details of which are presented elsewhere, gives predictions that match the test results reported in the literature. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate how the Gaussian process regression approach can be used to efficiently reconstruct free energy surfaces from umbrella sampling simulations. By making a prior assumption of smoothness and taking account of the sampling noise in a consistent fashion, we achieve a significant improvement in accuracy over the state of the art in two or more dimensions or, equivalently, a significant cost reduction to obtain the free energy surface within a prescribed tolerance in both regimes of spatially sparse data and short sampling trajectories. Stemming from its Bayesian interpretation the method provides meaningful error bars without significant additional computation. A software implementation is made available on www.libatoms.org.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate how a prior assumption of smoothness can be used to enhance the reconstruction of free energy profiles from multiple umbrella sampling simulations using the Bayesian Gaussian process regression approach. The method we derive allows the concurrent use of histograms and free energy gradients and can easily be extended to include further data. In Part I we review the necessary theory and test the method for one collective variable. We demonstrate improved performance with respect to the weighted histogram analysis method and obtain meaningful error bars without any significant additional computation. In Part II we consider the case of multiple collective variables and compare to a reconstruction using least squares fitting of radial basis functions. We find substantial improvements in the regimes of spatially sparse data or short sampling trajectories. A software implementation is made available on www.libatoms.org.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon fibre reinforced polymers (CFRP) are well-known for the excellent combination of mechanical and thermal properties with light weight. However, their tribological properties are still largely uncovered. In this work an experimental study of friction between two CFRP at weak normal load (inferior to 20 N) was performed. Two effects were scrutinuously studied during the experiments: fibre volume friction and fibre orientation. In addition to this experimental work, a modelling of a contact between two FRP was realized. It is supposed that the real area of contact consists of a multitude of microcontacts of three types: fibre-fibre, fibre-matrix and matrix-matrix. The experimental work has shown a small rise in friction coefficient with the change of fibre orientation of two composites from parallel to perpendicular relative to the sliding direction. In parallel, the proposed analytical model predicts a independence of this angle. Regarding the influence of the fibre volume fraction, Vf, the experiments reveal a decrease in friction coefficient of 50% with a change of Vf from 0% to 62%. This observation corresponds to the qualitative dependence depicted with the model. © 2012 EDP Sciences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High strength steels can suffer from a loss of ductility when exposed to hydrogen, and this may lead to sudden failure. The hydrogen is either accommodated in the lattice or is trapped at defects, such as dislocations, grain boundaries and carbides. The challenge is to identify the effect of hydrogen located at different sites upon the drop in tensile strength of a high strength steel. For this purpose, literature data on the failure stress of notched and un-notched steel bars are re-analysed; the bars were tested over a wide range of strain rates and hydrogen concentrations. The local stress state at failure has been determined by the finite element (FE) method, and the concentration of both lattice and trapped hydrogen is predicted using Oriani's theory along with the stress-driven diffusion equation. The experimental data are rationalised in terms of a postulated failure locus of peak maximum principal stress versus lattice hydrogen concentration. This failure locus is treated as a unique material property for the given steel and heat treatment condition. We conclude that the presence of lattice hydrogen increases the susceptibility to hydrogen embrittlement whereas trapped hydrogen has only a negligible effect. It is also found that the observed failure strength of hydrogen charged un-notched bars is less than the peak local stress within the notched geometries. Weakest link statistics are used to account for this stressed volume effect. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2014 by ASME. Two types of foldable rings are designed using polynomial continuation. The first type of ring, when deployed, forms regular polygons with an even number of sides and is designed by specifying a sequence of orientations which each bar must attain at various stages throughout deployment. A design criterion is that these foldable rings must fold with all bars parallel in the stowed position. At first, all three Euler angles are used to specify bar orientations, but elimination is also used to reduce the number of specified Euler angles to two, allowing greater freedom in the design process. The second type of ring, when deployed, forms doubly plane-symmetric (irregular) polygons. The doubly symmetric rings are designed using polynomial continuation, but in this example a series of bar end locations (in the stowed position) is used as the design criterion with focus restricted to those rings possessing eight bars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon fiber reinforced polymer (CFRP) composite sandwich panels with hybrid foam filled CFRP pyramidal lattice cores have been assembled from a carbon fiber braided net, 3D woven face sheets and various polymeric foams, and infused with an epoxy resin using a vacuum assisted resin transfer process. Sandwich panels with a fixed CFRP truss mass have been fabricated using a variety of closed cell polymer and syntactic foams, resulting in core densities ranging from 44-482kgm-3. The through thickness and in-plane shear modulus and strength of the cores increased with increasing foam density. The use of low compressive strength foams within the core was found to result in a significant reduction in the compressive strength contributed by the CFRP trusses. X-ray tomography led to the discovery that the trusses develop an elliptical cross-section shape during pressure assisted resin transfer. The ellipticity of the truss cross-sections increased, and the lattice contribution to the core strength decreased as the foam density was reduced. Micromechanical modeling was used to investigate the relationships between the mechanical properties and volume fractions of the core materials and truss topology of the hybrid core. The specific strength and moduli of the hybrid cores lay between those of the CFRP lattices and foams used to fabricate them. However, their volumetric and gravimetric energy absorptions significantly exceeded those of the materials from which they were fabricated. They compare favorably with other lightweight energy absorbing materials and structures. © 2013.