947 resultados para CARBON NUCLEOPHILES
Resumo:
We studied the feasibility of using halloysite clay nanotubes (HNTs) and carboxyl-functionalised multi-walled carbon nanotubes (COOH-MWCNTs) as antigen carriers to improve immune responses against a recombinant LipL32 protein (rLipL32). Immunisation using the HNTs or COOH-MWCNTs significantly increased the rLipL32-specific IgG antibody titres (p < 0.05) of Golden Syrian hamsters. None of the vaccines tested conferred protection against a challenge using a virulent Leptospira interrogans strain. These results demonstrated that nanotubes can be used as antigen carriers for delivery in hosts and the induction of a humoral immune response against purified leptospiral antigens used in subunit vaccine preparations.
Resumo:
Even if there is clinical evidence that carbon monoxide poisoning determines cardiac damage, the literature on the cardiac pathomorphology in such cases is scarce. We investigated the immunohistochemical expression of two known markers of fresh cardiac damage, fibronectin and the terminal complement complex C5b-9, in both cardiac ventricles in 26 cases of CO intoxication (study group, 15 ♀, 11 ♂, mean age 47 years, mean COHb level 65.9%, min. 51%, max. 85%) compared to a group of 23 cases of hanging (n = 23, 4♀, 19♂, mean age 42 years) as well as to 25 cases of myocardial infarction (n = 25, 13♀, 12♂, mean age 64 years). Fresh cardiac damage was detected with the antibody fibronectin in cases of CO poisoning and was prevalently localised at the right ventricle.
Resumo:
The aim of this study was to evaluate adverse effects of multiwalled carbon nanotubes (MWCNT), produced for industrial purposes, on the human epithelial cell line A549. MWCNT were dispersed in dipalmitoyl lecithin (DPL), a component of pulmonary surfactant, and the effects of dispersion in DPL were compared to those in two other media: ethanol (EtOH) and phosphate-buffered saline (PBS). Effects of MWCNT were also compared to those of two asbestos fibers (chrysotile and crocidolite) and carbon black (CB) nanoparticles, not only in A549 cells but also in mesothelial cells (MeT5A human cell line), used as an asbestos-sensitive cell type. MWCNT formed agglomerates on top of both cell lines (surface area 15-35 μm2) that were significantly larger and more numerous in PBS than in EtOH and DPL. Whatever the dispersion media, incubation with 100 μg/ml MWCNT induced a similar decrease in metabolic activity without changing cell membrane permeability or apoptosis. Neither MWCNT cellular internalization nor oxidative stress was observed. In contrast, asbestos fibers penetrated into the cells, decreased metabolic activity but not cell membrane permeability, and increased apoptosis, without decreasing cell number. CB was internalized without any adverse effects. In conclusion, this study demonstrates that MWCNT produced for industrial purposes exert adverse effects without being internalized by human epithelial and mesothelial pulmonary cell lines. [Authors]
Resumo:
Saffaj et al. recently criticized our method of monitoring carbon dioxide in human postmortem cardiac gas samples using Headspace-Gas Chromatography-Mass Spectrometry. According to the authors, their demonstration, based on the latest SFSTP guidelines (established after 2007 [1,2]) fitted for the validation of drug monitoring bioanalytical methods, has put in evidence potential errors. However, our validation approach was built using SFSTP guidelines established before 2007 [3-6]. We justify the use of these guidelines because of the post-mortem context of the study (and not clinical) and the gaseous state of the sample (and not solid or liquid). Using these guidelines, our validation remains correct.
Resumo:
In 58 newborn infants a new iridium oxide sensor was evaluated for transcutaneous carbon dioxide (tcPCO2) monitoring at 42 degrees C with a prolonged fixation time of 24 hours. The correlation of tcPCO2 (y; mm Hg) v PaCO2 (x; mm Hg) for 586 paired values was: y = 4.6 + 1.45x; r = .89; syx = 6.1 mm Hg. The correlation was not influenced by the duration of fixation. The transcutaneous sensor detected hypocapnia (PaCO2 less than 35 mm Hg) in 74% and hypercapnia (PCO2 greater than 45 mm Hg) in 74% of all cases. After 24 hours, calibration shifts were less than 4 mm Hg in 90% of the measuring periods. In 86% of the infants, no skin changes were observed; in 12% of infants, there were transitional skin erythemas and in 2% a blister which disappeared without scarring. In newborn infants with normal BPs, continuous tcPCO2 monitoring at 42 degrees C can be extended for as many as 24 hours without loss of reliability or increased risk for skin burns.
Resumo:
Report produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
IMPLICATIONS: A new combined ear sensor was tested for accuracy in 20 critically ill children. It provides noninvasive and continuous monitoring of arterial oxygen saturation, arterial carbon dioxide tension, and pulse rate. The sensor proved to be clinically accurate in the tested range.
Resumo:
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.
Resumo:
The fungus Aspergillus nidulans contains both a mitochondrial and peroxisomal ß-oxidation pathway. This work was aimed at studying the influence of mutations in the foxA gene, encoding a peroxisomal multifunctional protein, or in the scdA/echA genes, encoding a mitochondrial short-chain dehydrogenase and an enoyl-CoA hydratase, respectively, on the carbon flux to the peroxisomal ß-oxidation pathway. A. nidulans transformed with a peroxisomal polyhydroxyalkanoate (PHA) synthase produced PHA from the polymerization of 3-hydroxyacyl-CoA intermediates derived from the peroxisomal ß-oxidation of external fatty acids. PHA produced from erucic acid or heptadecanoic acid contained a broad spectrum of monomers, ranging from 5 to 14 carbons, revealing that the peroxisomal ß-oxidation cycle can handle both long and short-chain intermediates. While the ∆foxA mutant grown on erucic acid or oleic acid synthesized 10-fold less PHA compared to wild type, the same mutant grown on octanoic acid or heptanoic acid produced 3- to 6-fold more PHA. Thus, while FoxA has an important contribution to the degradation of long-chain fatty acids, the flux of short-chain fatty acids to peroxisomal ß-oxidation is actually enhanced in its absence. While no change in PHA was observed in the ∆scdA∆echA mutant grown on erucic acid or oleic acid compared to wild type, there was a 2- to 4-fold increased synthesis of PHA in ∆scdA∆echA cells grown in octanoic acid or heptanoic acid. These results reveal that a compensatory mechanism exists in A. nidulans that increases the flux of short-chain fatty acids towards the peroxisomal ß-oxidation cycle when the mitochondrial ß-oxidation pathway is defective.
Resumo:
Designation of Co-benefits and Its Implication for Policy: Water Quality versus Carbon Sequestration in Agricultural Soils, The
Resumo:
Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the beta-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the beta-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.
Resumo:
A detailed carbon-isotope stratigraphic study for the uppermost Pliensbachian lowermost Aalenian interval in the Median Subbetic palaeogeographic domain (External zones of the Betic Cordillera, southern Spain) has been carried out. During the Early Jurassic, the Median Subbetic, which represents a typical basin of the Hispanic Corridor connecting the Tethys and the Eastern Pacific, was located in the westernmost Tethys. The analyzed sections encompass the entire Toarcian stage as represented in the southern Iberian palaeomargin. Rocks are mainly rhythmic sequences of grey marls and marly limestones containing a rich ammonite fauna, nannofossils, and benthic foraminifers-all these provide an accurate biostratigraphic control. The lower and upper Toarcian boundaries are well represented in some of these sections and therefore represent optimal sites to link the carbon-isotope curves to ammonite zones, and to nannofossil events. delta C-13 values of bulk carbonates from the different localities of the Subbetic basin have similar variations from the uppermost Pliensbachian to the lowermost Aalenian, suggesting changes in the original DIC carbon isotope composition along the Hispanic corridor. The transition from Pliensbachian to Toarcian is marked by increasing delta C-13 values from similar to 12 to 2.0 parts per thousand, interrupted in the Serpentinum Zone by a negative shift concomitant with the Toarcian oceanic anoxic event (T-OAE), with the major ammonite extinction event of the Toarcian, and an important turnover of calcareous nannoplankton. The negative shift observed in the Serpentinum Zone confirms the global perturbation of the carbon cycling documented along the Tethys and the palaeo-Pacific in organic material and in marine carbonates. However, the amplitude of the negative excursion (similar to - 1.5 parts per thousand) is not compatible with an isotopic homogeneous seawater DIC and/or CO2 atmospheric reservoirs. The interval from the middle to the top of the Toarcian delta C-13 shows relatively constant values, minor ammonite turnovers, and is associated with increasing diversity of calcareous nannoplankton. (c) 2012 Elsevier B.V. All rights reserved.