992 resultados para CARBON BUDGET
Resumo:
Purpose The purpose of this paper is to determine whether greenhouse gas (GHG) tradeable instruments will be classified as financial products within the scope of the World Trade Organization (WTO) law and to explore the implications of this finding. Design/methodology/approach This purpose is achieved through examination of the units of the Australian Carbon Pricing Mechanism (CPM), namely eligible emissions units. These units are analysed through the lens of the definition of financial products provided in the General Agreement for Trade in Services (the GATS). Findings This paper finds that eligible emissions units will be classified as financial instruments, and therefore the provisions that govern their trade will be regulated by the GATS. Considering this, this paper explores the limitations that are introduced by the Australian legislation on the trade of eligible emissions units. Research limitations/implications This paper is limited in its analysis to the Australian CPM. In order to draw conclusions on the issues raised by this analysis it is necessary to consider the WTO requirements against an operating emissions trading scheme. The Australian CPM presents a contemporary model of an appropriate scheme. Originality/value The findings in this paper are crucial in a GHG constrained society. This is because emissions trading schemes are becoming popular measures for pricing GHG emissions, and for this reason the units that are traded and surrendered for emissions liabilities must be classified appropriately on a global scale. Failing to do this could result in differential treatment that may be contrary to the intentions of important global agreements, such as the WTO covered agreements.
Resumo:
‘Carbon trading fraudsters may have accounted for up to 90% of all market activity in some European countries, with criminals pocketing billions, mainly in Britain, France, Spain, Denmark and Holland, according to Europol and the European law enforcement agency.’ (Mason, 2009). ‘Carbon offset projects often result in land grabs, local environmental and social conflicts, as well as the repression of local communities and movements. The CDM approval process for projects allows little space for the voices of Indigenous Peoples and local communities – in fact, no project has ever been rejected on the grounds of rights violations, despite these being widespread’. (Carbon Trade Watch, 2013)
Resumo:
Capturing and sequestering carbon dioxide (CO2) can provide a route to partial mitigation of climate change associated with anthropogenic CO2 emissions. Here we report a comprehensive theoretical study of CO2 adsorption on two phases of boron, α-B12 and γ-B28. The theoretical results demonstrate that the electron deficient boron materials, such as α-B12 and γ-B28, can bond strongly with CO2 due to Lewis acid-base interactions because the electron density is higher on their surfaces. In order to evaluate the capacity of these boron materials for CO2 capture, we also performed calculations with various degrees of CO2 coverage. The computational results indicate CO2 capture on the boron phases is a kinetically and thermodynamically feasible process, and therefore from this perspective these boron materials are predicted to be good candidates for CO2 capture.
Resumo:
Bridges are important infrastructures of all nations and are required for transportation of goods as well as human. A catastrophic failure can result in loss of lives and enormous financial hardship to the nation. Although various kinds of sensors are now available to monitor the health of the structures due to corrosion, they do not provide permanent and long term measurements. This paper investigates the fabrication of Carbon Nanotube (CNT) based composite sensors for corrosion detection of structures. Multi-wall CNT (MWCNT)/Nafion composite sensors were fabricated to evaluate their electrical properties for corrosion detection. The test specimens were subjected to real life corrosion experimental tests and the results confirm that the electrical resistance of the sensor electrode was dramatically changed due to corrosion.
Resumo:
Nitrogen dioxide is used as a "radical scavenger" to probe the position of carbon-centered radicals within complex radical ions in the gas phase. As with analogous neutral radical reactions, this addition results in formation of an \[M + NO2](+) adduct, but the structural identity of this species remains ambiguous. Specifically, the question remains: do such adducts have a nitro-(RNO2) or nitrosoxy-(RONO) moiety, or are both isomers present in the adduct population? In order to elucidate the products of such reactions, we have prepared and isolated three distonic phenyl radical cations and observed their reactions with nitrogen dioxide in the gas phase by ion-trap mass spectrometry. In each case, stabilized \[M + NO2](+) adduct ions are observed and isolated. The structure of these adducts is probed by collision-induced dissociation and ultraviolet photodissociation action spectroscopy and a comparison made to the analogous spectra of authentic nitro-and nitrosoxy-benzenes. We demonstrate unequivocally that for the phenyl radical cations studied here, all stabilized \[M + NO2](+) adducts are exclusively nitrobenzenes. Electronic structure calculations support these mass spectrometric observations and suggest that, under low-pressure conditions, the nitrosoxy-isomer is unlikely to be isolated from the reaction of an alkyl or aryl radical with NO2. The combined experimental and theoretical results lead to the prediction that stabilization of the nitrosoxy-isomer will only be possible for systems wherein the energy required for dissociation of the RO-NO bond (or other low energy fragmentation channels) rises close to, or above, the energy of the separated reactants.
Resumo:
Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties are found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites’ thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.
Resumo:
A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.
Resumo:
The Australian Government’s Skills for the Carbon Challenge (SCC) initiative aims to accelerate industry and the education sectors response to climate change. As part of the SCC initiative, the Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education (DIICCSRTE) provided funding to investigate the state of energy efficiency education in engineering-related Australian Technical and Further Education (TAFE) Programs. The following document reports on the outcomes of a multi-stage consultation project that engaged with participants from over 80% of TAFE institutions across Australia with the aim of supporting and enhancing future critical skills development in this area. Specifically, this report presents the findings of a national survey, based on a series of TAFE educator focus groups, conducted in May 2013 aimed at understanding the experiences and insights of Australian TAFE educators teaching engineering-related courses. Responses were received from 224 TAFE Educators across 50 of the 61 TAFE institutions in Australia (82% response rate).
Resumo:
Given the increased importance of adaptation debates in global climate negotiations, pressure to achieve biodiversity, food and water security through managed landscape-scale adaptation will likely increase across the globe over the coming decade. In parallel, emerging market-based, terrestrial greenhouse gas abatement programs present a real opportunity to secure such adaptation to climate change through enhanced landscape resilience. Australia has an opportunity to take advantage of such programs through regional planning aspects of its governance arrangements for NRM. This paper explores necessary reforms to Australia's regional NRM planning systems to ensure that they will be better able to direct the nation's emerging GGA programs to secure enhanced landscape adaptation. © 2013 Planning Institute Australia.
Resumo:
In this paper we discuss the social, economic and institutional aspects of the development of carbon management systems within Australia's tropical savannas. Land-use values in savanna landscapes are changing as a result of changing economic markets, greater recognition of native title, and growing social demands and expectations for tourism, recreation and conservation. In addition, there is increasing interest in developing markets and policy arrangements for greenhouse gas abatement, carbon sequestration and carbon trade in savannas. We argue that for carbon management to lead to national greenhouse outcomes, attention must be paid to social, economic and institutional issues in environmental planning and policy arrangements. From an economic perspective, the financial impact of carbon management on savanna enterprises will depend on appropriate and available policy mechanisms, unit price for carbon, landscape condition, existing management strategies and abatement measurements used. Local social and cultural features of communities and regions may enhance or constrain the implementation of carbon abatement strategies, depending on how they are perceived. In terms of institutional arrangements, policies and plans must support and enable carbon management. We identify three areas that require priority investigation and adjustment: regional planning arrangements, property rights, and rules for accounting at enterprise and regional scales. We conclude that the best potential for managing for carbon will be achieved while managing for range of other natural resource management outcomes, especially where managing for carbon delivers collateral benefits to enterprises.
Resumo:
Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD4, in four bituminous coals in the range of pore sizes between ∼10 Å and ∼5 μm. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD4, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD4 varied from ∼13 to ∼36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO2 and CD4 were conducted as a function of the pressure in the range of 1−400 bar. The neutron scattering intensity from small pores with radii less than 35 Å in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO2 and supercritical methane in small pores.
Resumo:
Fluid–solid interactions in natural and engineered porous solids underlie a variety of technological processes, including geological storage of anthropogenic greenhouse gases, enhanced coal bed methane recovery, membrane separation, and heterogeneous catalysis. The size, distribution and interconnectivity of pores, the chemical and physical properties of the solid and fluid phases collectively dictate how fluid molecules migrate into and through the micro- and meso-porous media, adsorb and ultimately react with the solid surfaces. Due to the high penetration power and relatively short wavelength of neutrons, smallangle neutron scattering (SANS) as well as ultra small-angle scattering (USANS) techniques are ideally suited for assessing the phase behavior of confined fluids under pressure as well as for evaluating the total porosity in engineered and natural porous systems including coal. Here we demonstrate that SANS and USANS can be also used for determining the fraction of the pore volume that is actually accessible to fluids as a function of pore sizes and study the fraction of inaccessible pores as a function of pore size in three coals from the Illinois Basin (USA) and Bowen Basin (Australia). Experiments were performed at CO2 and methane pressures up to 780 bar, including pressures corresponding to zero average contrast condition (ZAC), which is the pressure where no scattering from the accessible pores occurs. Scattering curves at the ZAC were compared with the scattering from same coals under vacuum and analysed using a newly developed approach that shows that the volume fraction of accessible pores in these coals varies between �90% in the macropore region to �30% in the mesopore region and the variation is distinctive for each of the examined coals. The developed methodology may be also applied for assessing the volume of accessible pores in other natural underground formations of interest for CO2 sequestration, such as saline aquifers as well as for estimating closed porosity in engineered porous solids of technological importance.
Resumo:
Global climate change is one of the most significant environmental issues that can harm human development. One central issue for the building and construction industry to address global climate change is the development of a credible and meaningful way to measure greenhouse gas (GHG) emissions. While Publicly Available Specification (PAS) 2050, the first international GHG standard, has been proven to be successful in standardizing the quantification process, its contribution to the management of carbon labels for construction materials is limited. With the recent publication of ISO 14067: Greenhouse gases – carbon footprint of products – requirements and guidelines for quantification and communication in May 2013, it is necessary for the building and construction industry to understand the past, present and future of the carbon labelling practices for construction materials. A systematic review shows that international GHG standards have been evolving in terms of providing additional guidance on communication and comparison, as well as less flexibility on the use of carbon labels. At the same time, carbon labelling schemes have been evolving on standardization and benchmarking. In addition, future actions are needed in the aspect of raising consumer awareness, providing benchmarking, ensuring standardization and developing simulation technologies in order for carbon labelling schemes for construction materials to provide credible, accurate and transparent information on GHG emissions.
Resumo:
Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.