961 resultados para CARBOHYDRATES
Resumo:
The aim of this study was to analyze the use of 12 single-nucleotide polymorphisms in genes ELAC2, RNASEL and MSR1 as biomarkers for prostate cancer (PCa) detection and progression, as well as perform a genetic classification of high-risk patients. A cohort of 451 men (235 patients and 216 controls) was studied. We calculated means of regression analysis using clinical values (stage, prostate-specific antigen, Gleason score and progression) in patients and controls at the basal stage and after a follow-up of 72 months. Significantly different allele frequencies between patients and controls were observed for rs1904577 and rs918 (MSR1 gene) and for rs17552022 and rs5030739 (ELAC2). We found evidence of increased risk for PCa in rs486907 and rs2127565 in variants AA and CC, respectively. In addition, rs627928 (TT-GT), rs486907 (AG) and rs3747531 (CG-CC) were associated with low tumor aggressiveness. Some had a weak linkage, such as rs1904577 and rs2127565, rs4792311 and rs17552022, and rs1904577 and rs918. Our study provides the proof-of-principle that some of the genetic variants (such as rs486907, rs627928 and rs2127565) in genes RNASEL, MSR1 and ELAC2 can be used as predictors of aggressiveness and progression of PCa. In the future, clinical use of these biomarkers, in combination with current ones, could potentially reduce the rate of unnecessary biopsies and specific treatments.
Resumo:
The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca(2+) and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca(2+)-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB(+) 1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin(+) cells (granular and pyramidal neurons), and calretinin(+) and parvalbumin(+) interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin(+) principal cells in the dentate gyrus and CA1, and in the calretinin(+) and parvalbumin(+) interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL(+) terminals were only observed around CA1 calbindin(+) pyramidal cells, CA1/3 calretinin(+) interneurons and CA3 parvalbumin(+) interneurons localized in the pyramidal cell layers. Interestingly, calbindin(+) pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.
Resumo:
Background: The glycosylated hemoglobin (HbA1c) is used to help monitor the degree of a diabetic’s hyperglycemia. Security and accuracy of the methods used in its detection are affected by variants forms of Hb or elevations in levels of Fetal Hb (HbF). These interference are the result of a change in the haemoglobin total net charge of the variant due of a substitution of one amino acid in the remaining amino terminal of the beta chain. International Standardization for HbA1c values (NGSP) not include interference assessment as part of the certification program. Therefore, the effect of each variant or the lifting of the HbF on HbA1c result should be examined in each sample depending on the detected variant and the method used for the detection of the same. The objectives were: to describe the possible variants of Hb and their interference in HbA1c measurement by our method, after the implementation of a computer program for their detection. To identify some variants detected by chromatography liquid ion exchange high resolution (HPLC) with DNA molecular sequencing.
Resumo:
OBJECTIVE Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. METHODS ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. RESULTS ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. CONCLUSIONS ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.
Resumo:
BACKGROUND Measurement of HbA1c is the most important parameter to assess glycemic control in diabetic patients. Different point-of-care devices for HbA1c are available. The aim of this study was to evaluate two point-of-care testing (POCT) analyzers (DCA Vantage from Siemens and Afinion from Axis-Shield). We studied the bias and precision as well as interference from carbamylated hemoglobin. METHODS Bias of the POCT analyzers was obtained by measuring 53 blood samples from diabetic patients with a wide range of HbA1c, 4%-14% (20-130 mmol/mol), and comparing the results with those obtained by the laboratory method: HPLC HA 8160 Menarini. Precision was performed by 20 successive determinations of two samples with low 4.2% (22 mmol/mol) and high 9.5% (80 mmol/mol) HbA1c values. The possible interference from carbamylated hemoglobin was studied using 25 samples from patients with chronic renal failure. RESULTS The means of the differences between measurements performed by each POCT analyzer and the laboratory method (95% confidence interval) were: 0.28% (p<0.005) (0.10-0.44) for DCA and 0.27% (p<0.001) (0.19-0.35) for Afinion. Correlation coefficients were: r=0.973 for DCA, and r=0.991 for Afinion. The mean bias observed by using samples from chronic renal failure patients were 0.2 (range -0.4, 0.4) for DCA and 0.2 (-0.2, 0.5) for Afinion. Imprecision results were: CV=3.1% (high HbA1c) and 2.97% (low HbA1c) for DCA, CV=1.95% (high HbA1c) and 2.66% (low HbA1c) for Afinion. CONCLUSIONS Both POCT analyzers for HbA1c show good correlation with the laboratory method and acceptable precision.
Resumo:
Teicoplanin is frequently administered to treat Gram-positive infections in pediatric patients. However, not enough is known about the pharmacokinetics (PK) of teicoplanin in children to justify the optimal dosing regimen. The aim of this study was to determine the population PK of teicoplanin in children and evaluate the current dosage regimens. A PK hospital-based study was conducted. Current dosage recommendations were used for children up to 16 years of age. Thirty-nine children were recruited. Serum samples were collected at the first dose interval (1, 3, 6, and 24 h) and at steady state. A standard 2-compartment PK model was developed, followed by structural models that incorporated weight. Weight was allowed to affect clearance (CL) using linear and allometric scaling terms. The linear model best accounted for the observed data and was subsequently chosen for Monte Carlo simulations. The PK parameter medians/means (standard deviation [SD]) were as follows: CL, [0.019/0.023 (0.01)] × weight liters/h/kg of body weight; volume, 2.282/4.138 liters (4.14 liters); first-order rate constant from the central to peripheral compartment (Kcp), 0.474/3.876 h(-1) (8.16 h(-1)); and first-order rate constant from peripheral to central compartment (Kpc), 0.292/3.994 h(-1) (8.93 h(-1)). The percentage of patients with a minimum concentration of drug in serum (Cmin) of <10 mg/liter was 53.85%. The median/mean (SD) total population area under the concentration-time curve (AUC) was 619/527.05 mg · h/liter (166.03 mg · h/liter). Based on Monte Carlo simulations, only 30.04% (median AUC, 507.04 mg · h/liter), 44.88% (494.1 mg · h/liter), and 60.54% (452.03 mg · h/liter) of patients weighing 50, 25, and 10 kg, respectively, attained trough concentrations of >10 mg/liter by day 4 of treatment. The teicoplanin population PK is highly variable in children, with a wider AUC distribution spread than for adults. Therapeutic drug monitoring should be a routine requirement to minimize suboptimal concentrations. (This trial has been registered in the European Clinical Trials Database Registry [EudraCT] under registration number 2012-005738-12.).
Resumo:
Chronic hepatitis C virus (HCV) is associated with significant morbidity and mortality, as a result of the progression towards cirrhosis and hepatocellular carcinoma. Additionally, HCV seems to be an independent risk factor for cardiovascular diseases (CVD) due to its association with insulin resistance, diabetes and steatosis. HCV infection represents an initial step in the chronic inflammatory cascade, showing a direct role in altering glucose metabolism. After achieving sustained virological response, the incidence of insulin resistance and diabetes dramatically decrease. HCV core protein plays an essential role in promoting insulin resistance and oxidative stress. On the other hand, atherosclerosis is a common disease in which the artery wall thickens due to accumulation of fatty deposits. The main step in the formation of atherosclerotic plaques is the oxidation of low density lipoprotein particles, together with the increased production of proinflammatory markers [tumor necrosis factor-α, interleukin (IL)-6, IL-18 or C-reactive protein]. The advent of new direct acting antiviral therapy has dramatically increased the sustained virological response rates of hepatitis C infection. In this scenario, the cardiovascular risk has emerged and represents a major concern after the eradication of the virus. Consequently, the number of studies evaluating this association is growing. Data derived from these studies have demonstrated the strong link between HCV infection and the atherogenic process, showing a higher risk of coronary heart disease, carotid atherosclerosis, peripheral artery disease and, ultimately, CVD-related mortality.
Resumo:
In 10 moderately obese women, 24-h energy expenditure (24EE) was measured in a respiration chamber under four conditions: 1) before weight loss (body weight = 77.9 kg), 2) during weight loss (63.9 kg), 3) after realimentation (62.5 kg), and 4) 6-15 mo after the study diet with ad libitum diet (67.7 kg). The 14 +/- 8 kg (mean +/- SD) weight loss produced a decrease in 24EE of 1498 +/- 1138 kJ/d (P < 0.001), ie, a decrease of weight of 107 kJ.kg body wt-1.d-1. The subsequent 24EE (conditions 3 and 4) remained lower than the value before weight loss. A significant correlation was found between changes before and after weight regain in basal respiratory quotient (RQ) and the spontaneous rate of body-weight gain after cessation of the period of low energy intake (r = 0.89, P < 0.01); this suggests that the value of the postabsorptive RQ may be a predictor of relapse of weight gain. After discontinuation of the low energy diet, an elevated postabsorptive RQ shows that the endogenous lipid oxidation is low, a condition favoring weight gain.
Resumo:
A novel approach to the study of hepatic glycogen kinetics and fractional gluconeogenesis in vivo is described. Ten healthy female subjects were fed an iso-caloric diet containing 55% carbohydrate energy with a 13C abundance of 1.083 atom percent for a 3-day baseline period; then, a diet of similar composition, but providing carbohydrate with a 13C abundance of 1.093 atom percent was started and continued for 5 days. Resting respiratory gas exchanges, urinary nitrogen excretion, breath 13CO2 and plasma 13C glucose were measured every morning in the fasting state. The enrichment in 13C of hepatic glycogen was calculated from these measured data. 13C glycogen enrichment increased after switching to a 13C enriched carbohydrate diet, and was identical to the 13C enrichment of dietary carbohydrates after 3 days. The time required to renew 50% of hepatic glycogen, as determined from the kinetics of 13C glycogen enrichment, was 18.9 +/- 3.6 h. Fractional gluconeogenesis, as determined from the difference between the enrichments of glucose oxidized originating from hepatic glycogen and plasma glucose 13C was 50.8 +/- 5.3%. This non-invasive method will allow the study of hepatic glycogen metabolism in insulin-resistant patients.
Resumo:
Obesity results from the organism's inability to maintain energy balance over a long term. Childhood obesity and its related factors and pathological consequences tend to persist into adulthood. A cluster of factors, including high energy density in the diet (high fat intake), low energy expenditure, and disturbed substrate oxidation, favour the increase in fat mass. Oxidation of three major macronutrients and their roles in the regulation of energy balance, particularly in children and adolescents, are discussed. Total glucose oxidation is not different between obese and lean children; exogenous glucose utilization is higher whereas endogenous glucose utilization is lower in obese compared with lean children. Carbohydrate composition of the diet determines carbohydrate oxidation regardless of fat content of the diet. Both exogenous and endogenous fat oxidation are higher in obese than in lean subjects. The influence of high fat intake on accumulation of fat mass is operative rather over a long term. Several future directions are addressed, such that a combination of increased physical activity and modification in diet composition, in terms of energy density and glycemic index, is recommended for children and adolescents.
Resumo:
The effect of diet composition [high-carbohydrate, low-fat (HC) and high-fat, low-carbohydrate (HF) diets] on macronutrient intakes and nutrient balances was investigated in young men of normal body weight. Eleven subjects were studied on two occasions for 48 h in a whole-body indirect calorimeter in a crossover design. Subjects selected their meals from a list containing a large variety of common food, which had a food quotient > 0.85 for the HC diet and < 0.85 for the HF diet. The average ad libitum intake was 14.41 +/- 0.85 MJ/d (67%, 18%, and 15% of energy as carbohydrate, fat, and protein, respectively) with the HC diet and 18.25 +/- 0.90 MJ/d (26%, 61%, and 13% of energy as carbohydrate, fat, and protein, respectively) with the HF diet. Total energy expenditure was not significantly influenced by diet composition: 10.46 +/- 0.27 and 10.97 +/- 0.22 MJ/d for the HC and HF diets, respectively. During the 2 test days, cumulative carbohydrate storage was 418 +/- 72 and 205 +/- 47 g, and fat balance was 29 +/- 17 and 291 +/- 29 g with the HC and HF diets, respectively. Only the HF diet induced a significantly positive fat balance. These results emphasize the important role of the dietary fat content in body fat storage.
Resumo:
The synthesis of /-L-fucosylated cysteamine, 3-thiopropionic acid, and 3-thioacetic acid derivatives as building blocks for the preparation of S-neofucopeptides is shown. These compounds were used in the synthesis of new thiofucosides derivatives (8, 9, 9, 10, 22, 22, 24, 26) that show affinity towards E- and P-selectins. They constitute a new series of hydrolytically stable and low-molecular-weight mimetics of the natural SLex tetrasaccharide.
Resumo:
Background: Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury. Results:The analysis allowed us to identify 43 spots -representing about 18% of the total number analyzed- that show statistically significant changes. Thirty-nine of the proteins could be identified by mass spectrometry. Some of the proteins that changed during postharvest had been related to peach fruit ripening and cold stress in the past. However, we identified other proteins that had not been linked to these processes. A graphical display of the relationship between the differentially accumulated proteins was obtained using pairwise average-linkage cluster analysis and principal component analysis. Proteins such as endopolygalacturonase, catalase, NADP-dependent isocitrate dehydrogenase, pectin methylesterase and dehydrins were found to be very important for distinguishing between healthy and chill injured fruit. A categorization of the differentially accumulated proteins was performed using Gene Ontology annotation. The results showed that the 'response to stress', 'cellular homeostasis', 'metabolism of carbohydrates' and 'amino acid metabolism' biological processes were affected the most during the postharvest. Conclusions: Using a comparative proteomic approach with 2-D DIGE allowed us to identify proteins that showed stage-specific changes in their accumulation pattern. Several proteins that are related to response to stress, cellular homeostasis, cellular component organization and carbohydrate metabolism were detected as being differentially accumulated. Finally, a significant proportion of the proteins identified had not been associated with softening, cold storage or chilling injury-altered fruit before; thus, comparative proteomics has proven to be a valuable tool for understanding fruit softening and postharvest.
Resumo:
In the mid-to long-term, resource constraints will force society to cover a significant share of the future demand for fuels, materials and chemicals by renewable resources. This trend is already visible in the increasing conversion of carbohydrates and plant oils to fuels, chemicals, and polymers. In this perspective, we discuss current efforts and ideas to produce platform chemicals and polymers directly in transgenic plants.
Resumo:
Continuous respiratory exchange measurements were performed on five women and five men for 1 h before and 6 h after the administration of a milkshake (53% carbohydrates, 30% lipid, and 17% protein energy) given either as a single bolus dose or continuously during 3 h using a nasogastric tube. The energy administered corresponded to 2.3 times the postabsorptive resting energy expenditure. Resting energy expenditure, respiratory quotient, plasma glucose, and insulin concentrations increased sooner and steeper, and plasma free fatty acids levels decreased earlier with the meal ingested as a single dose than with continuous administration. The magnitude of nutrient-induced thermogenesis was greater (P less than 0.01) with the single dose (means +/- SE, 10.0 +/- 0.6%) than with the continuous administration (8.1 +/- 0.5%). The overall (6 h) substrate balances were not significantly different between the two modes of administration. It is concluded that the mode of enteral nutrient administration influences the immediate thermogenic response as well as changes in respiratory quotient, glycemia, and insulinemia; however, the overall nutrient balance was not affected by the mode of enteral nutrient administration.