987 resultados para C-70


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digitalización Vitoria-Gasteiz Archivos y Bibliotecas Mayo 1994 18-24

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current EU Directives force the Member States to assure by 2020 that 70% of the Construction and Demolition (C&D) waste is recovered instead of landfilled. While some countries have largely achieved this target, others still have a long way to go. For better understanding the differences arising from local disparities, six factors related to technical, economic, legislative and environmental aspects have been identified as crucial influences in the market share of C&D waste recycling solutions. These factors are able to identify the causes that limit the recycling rate of a certain region. Moreover, progress towards an efficient waste management can vary through the improvement of a single factor. This study provides the background for further fine-tuning the factors and their combination into a mathematical model for assessing the market share of C&D recycling solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified a mammalian protein called GIPC (for GAIP interacting protein, C terminus), which has a central PDZ domain and a C-terminal acyl carrier protein (ACP) domain. The PDZ domain of GIPC specifically interacts with RGS-GAIP, a GTPase-activating protein (GAP) for Gαi subunits recently localized on clathrin-coated vesicles. Analysis of deletion mutants indicated that the PDZ domain of GIPC specifically interacts with the C terminus of GAIP (11 amino acids) in the yeast two-hybrid system and glutathione S-transferase (GST)-GIPC pull-down assays, but GIPC does not interact with other members of the RGS (regulators of G protein signaling) family tested. This finding is in keeping with the fact that the C terminus of GAIP is unique and possesses a modified C-terminal PDZ-binding motif (SEA). By immunoblotting of membrane fractions prepared from HeLa cells, we found that there are two pools of GIPC–a soluble or cytosolic pool (70%) and a membrane-associated pool (30%). By immunofluorescence, endogenous and GFP-tagged GIPC show both a diffuse and punctate cytoplasmic distribution in HeLa cells reflecting, respectively, the existence of soluble and membrane-associated pools. By immunoelectron microscopy the membrane pool of GIPC is associated with clusters of vesicles located near the plasma membrane. These data provide direct evidence that the C terminus of a RGS protein is involved in interactions specific for a given RGS protein and implicates GAIP in regulation of additional functions besides its GAP activity. The location of GIPC together with its binding to GAIP suggest that GAIP and GIPC may be components of a G protein-coupled signaling complex involved in the regulation of vesicular trafficking. The presence of an ACP domain suggests a putative function for GIPC in the acylation of vesicle-bound proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An early stage in thymocyte development, after rearrangement of the β chain genes of the T cell receptor (TCR), involves expression of the pre-TCR complex and accompanying differentiation of CD4−CD8− double negative (DN) cells to CD4+CD8+ double positive (DP) cells. The ZAP-70 and Syk tyrosine kinases each contain two N-terminal SH2 domains that bind phosphorylated motifs in antigen receptor subunits and are implicated in pre-T receptor signaling. However, mice deficient in either ZAP-70 or Syk have no defect in the formation of DP thymocytes. Here we show that, in mice lacking both Syk and ZAP-70, DN thymocytes undergo β chain gene rearrangement but fail to initiate clonal expansion and are incapable of differentiating into DP cells after expression of the pre-TCR. These data suggest that the ZAP-70 and Syk tyrosine kinases have crucial but overlapping functions in signaling from the pre-TCR and hence in early thymocyte development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The core enzyme of Escherichia coli RNA polymerase acquires essential promoter recognition and transcription initiation activities by binding one of several σ subunits. To characterize the proximity between σ70, the major σ for transcription of the growth-related genes, and the core enzyme subunits (α2ββ′), we analyzed the protein-cutting patterns produced by a set of covalently tethered FeEDTA probes [FeBABE: Fe (S)-1-(p-bromoacetamidobenzyl)EDTA]. The probes were positioned in or near conserved regions of σ70 by using seven mutants, each carrying a single cysteine residue at position 132, 376, 396, 422, 496, 517, or 581. Each FeBABE-conjugated σ70 was bound to the core enzyme, which led to cleavage of nearby sites on the β and β′ subunits (but not α). Unlike the results of random cleavage [Greiner, D. P., Hughes, K. A., Gunasekera, A. H. & Meares, C. F. (1996) Proc. Natl. Acad. Sci. USA 93, 71–75], the cut sites from different probe-modified σ70 proteins are clustered in distinct regions of the subunits. On the β subunit, cleavage is observed in two regions, one between residues 383 and 554, including the conserved C and Rif regions; and the other between 854 and 1022, including conserved region G, regions of ppGpp sensitivity, and one of the segments forming the catalytic center of RNA polymerase. On the β′ subunit, the cleavage was identified within the sequence 228–461, including β′ conserved regions C and D (which comprise part of the catalytic center).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reduced (FeII) Rhodopseudomonas palustris cytochrome c′ (Cyt c′) is more stable toward unfolding ([GuHCl]1/2 = 2.9(1) M) than the oxidized (FeIII) protein ([GuHCl]1/2 = 1.9(1) M). The difference in folding free energies (ΔΔGf° = 70 meV) is less than half of the difference in reduction potentials of the folded protein (100 mV vs. NHE) and a free heme in aqueous solution (≈−150 mV). The spectroscopic features of unfolded FeII–Cyt c′ indicate a low-spin heme that is axially coordinated to methionine sulfur (Met-15 or Met-25). Time-resolved absorption measurements after CO photodissociation from unfolded FeII(CO)–Cyt c′ confirm that methionine can bind to the ferroheme on the microsecond time scale [kobs = 5(2) × 104 s−1]. Protein folding was initiated by photoreduction (two-photon laser excitation of NADH) of unfolded FeIII–Cyt c′ ([GuHCl] = 2.02–2.54 M). Folding kinetics monitored by heme absorption span a wide time range and are highly heterogeneous; there are fast-folding (≈103 s−1), intermediate-folding (102–101 s−1), and slow-folding (10−1 s−1) populations, with the last two likely containing methionine-ligated (Met-15 or Met-25) ferrohemes. Kinetics after photoreduction of unfolded FeIII–Cyt c′ in the presence of CO are attributable to CO binding [1.4(6) × 103 s−1] and FeII(CO)–Cyt c′ folding [2.8(9) s−1] processes; stopped-flow triggered folding of FeIII–Cyt c′ (which does not contain a protein-derived sixth ligand) is adequately described by a single kinetics phase with an estimated folding time constant of ≈4 ms [ΔGf° = −33(3) kJ mol−1] at zero denaturant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine heart cytochrome c oxidase is an electron-current driven proton pump. To investigate the mechanism by which this pump operates it is important to study individual electron- and proton-transfer reactions in the enzyme, and key reactions in which they are kinetically and thermodynamically coupled. In this work, we have simultaneously measured absorbance changes associated with electron-transfer reactions and conductance changes associated with protonation reactions following pulsed illumination of the photolabile complex of partly reduced bovine cytochrome c oxidase and carbon monoxide. Following CO dissociation, several kinetic phases in the absorbance changes were observed with time constants ranging from approximately 3 microseconds to several milliseconds, reflecting internal electron-transfer reactions within the enzyme. The data show that the rate of one of these electron-transfer reactions, from cytochrome a3 to a on a millisecond time scale, is controlled by a proton-transfer reaction. These results are discussed in terms of a model in which cytochrome a3 interacts electrostatically with a protonatable group, L, in the vicinity of the binuclear center, in equilibrium with the bulk through a proton-conducting pathway, which determines the rate of proton transfer (and indirectly also of electron transfer). The interaction energy of cytochrome a3 with L was determined independently from the pH dependence of the extent of the millisecond-electron transfer and the number of protons released, as determined from the conductance measurements. The magnitude of the interaction energy, 70 meV (1 eV = 1.602 x 10(-19) J), is consistent with a distance of 5-10 A between cytochrome a3 and L. Based on the recently determined high-resolution x-ray structures of bovine and a bacterial cytochrome c oxidase, possible candidates for L and a physiological role for L are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipophosphoglycan (LPG), the predominant molecule on the surface of the parasite Leishmania donovani, has previously been shown to be a potent inhibitor of protein kinase C (PKC) isolated from rat brain. The mechanism by which LPG inhibits PKC was further investigated in this study. LPG was found to inhibit the PKC alpha-catalyzed phosphorylation of histone in assays using large unilamellar vesicles composed of 1-palmitoyl, 2-oleoyl phosphatidylserine and 1-palmitoyl, 2-oleoyl phosphatidylcholine either with or without 1% 1,2 diolein added. The results also indicated that while PKC binding to sucrose-loaded vesicles was not substantially reduced in the presence of LPG at concentrations of 1-2%, the activity of membrane-bound PKC was inhibited by 70%. This inhibition of the membrane-bound form of PKC is not a consequence of reduced substrate availability to the membrane. However, Km shifted from approximately 31 +/- 4 microM to 105 +/- 26 microM in the presence of 5% LPG. LPG caused PKC to bind to membranes without inducing a conformational change as revealed by the lack of an increased susceptibility to trypsin. An LPG fragment containing only one repeating disaccharide unit was not as effective as the entire LPG molecule or of larger fragments in inhibiting the membrane-bound form of the enzyme. The shorter fragments were also less potent in raising the bilayer to hexagonal phase transition temperature of a model membrane. LPG is also able to inhibit the membrane-bound form of PKC alpha from the inner monolayer of large unilamellar vesicles, the opposite monolayer to which the enzyme binds in our assay. Inhibition is likely a result of alterations in the physical properties of the membrane. To our knowledge, this is the first example of a membrane additive that can inhibit the membrane-bound form of PKC in the presence of other lipid cofactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We addressed the question as to which subtypes of G protein subunits mediate the activation of phospholipase C-beta by the muscarinic m1 receptor. We used the rat basophilic leukemia cell line RBL-2H3-hm1 stably transfected with the human muscarinic m1 receptor cDNA. We microinjected antisense oligonucleotides into the nuclei of the cells to inhibit selectively the expression of G protein subunits; 48 hr later muscarinic receptors were activated by carbachol, and the increase in free cytosolic calcium concentration ([Ca2+]i) was measured. Antisense oligonucleotides directed against the mRNA coding for alpha(q) and alpha11 subunits both suppressed the carbachol-induced increase in [Ca2+]i. In cells injected with antisense oligonucleotides directed against alpha(o1) and alpha14 subunits, the carbachol effect was unchanged. A corresponding reduction of Galpha(q), and Galpha11 proteins by 70-80% compared to uninjected cells was immunochemically detected 2 days after injection of a mixture of alpha(q) and alpha11 antisense oligonucleotides. Expression of Galpha(q) and Galpha11 completely recovered after 4 days. Cells injected with antisense oligonucleotides directed against the mRNAs encoding for beta1, beta4, and gamma4 subunits showed a suppression of the carbachol-induced increase in [Ca2+]i compared to uninjected cells measured at the same time from the same coverslip, whereas in cells injected with antisense oligonucleotides directed against the beta2, beta3, gamma1, gamma2, gamma3, gamma5, and gamma7 subunits, no suppression of carbachol effect was observed. In summary, the results from RBL-2H3-hm1 cells indicate that the m1 receptor utilizes a G protein complex composed of the subunits alpha(q), alpha11, beta1, beta4, and gamma4 to activate phospholipase C.