891 resultados para Bovine pituitary Growth hormone gene expression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of the circadian rhythm for mammals depends on the levels of serotonin and melatonin, neurohormones that signal for lightness and darkness, respectively. Disruption in the stability of neurohormones has been shown to be a critical factor in psychopathological disorders in humans. For example, altering levels of melatonin in utero through administration of melatonin or the melatonin receptor antagonist, luzindole, has been shown to cause changes in developmental growth and adult behavior in the male rat. Analysis of relative adult hippocampal gene expression with RT-PCR revealed differences in ARNTL expression that suggested abnormality in clock gene expression of the rats that were prenatally exposed to altered levels of melatonin. Differences in the degree of plasticity as suggested by previous behavior testing did not result in differences in gene expression for GABA receptors or NMDA receptors. Morevoer, growth associated protein 43, GAP-43, a protein that is necessary for neuronal growth cones as well as long term learning has been found to be critical for axon and presynaptic terminal formation and retention in other studies, but hippocampal gene expression in our study showed no significant alteration after exposure to various maternal melatonin levels. However, ARNTL is a key regulatory component of clock genes and the circadian cycle so that alterations in the expression of thi critical gene may lead to critical changes in neuronal growth and plasticity. Our data support the conclusion that the manipulation of maternal melatonin levels alters the brain development and the circadian cycles that may lead to physiological and behavioral abnormalities in adult offspring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the hypothesis that excess saturated fat consumption during pregnancy, lactation, and/or postweaning alters the expression of genes mediating hippocampal synaptic efficacy and impairs spatial learning and memory in adulthood. Dams were fed control chow or a diet high in saturated fat before mating, during pregnancy, and into lactation. Offspring were weaned to either standard chow or a diet high in saturated fat. The Morris Water Maze was used to evaluate spatial learning and memory. Open field testing was used to evaluate motor activity. Hippocampal gene expression in adult males was measured using RT-PCR and ELISA. Offspring from high fat-fed dams took longer, swam farther, and faster to try and find the hidden platform during the 5-day learning period. Control offspring consuming standard chow spent the most time in memory quadrant during the probe test. Offspring from high fat-fed dams consuming excess saturated fat spent the least. The levels of mRNA and protein for brain-derived neurotrophic factor and activity-regulated cytoskeletal-associated protein were significantly decreased by maternal diet effects. Nerve growth factor mRNA and protein levels were significantly reduced in response to both maternal and postweaning high-fat diets. Expression levels for the N-methyl-D-aspartate receptor (NMDA) receptor subunit NR2B as well as synaptophysin were significantly decreased in response to both maternal and postweaning diets. Synaptotagmin was significantly increased in offspring from high fat-fed dams. These data support the hypothesis that exposure to excess saturated fat during hippocampal development is associated with complex patterns of gene expression and deficits in learning and memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Pneumococcal meningitis is associated with high mortality (approximately 30%) and morbidity. Up to 50% of survivors are affected by neurological sequelae due to a wide spectrum of brain injury mainly affecting the cortex and hippocampus. Despite this significant disease burden, the genetic program that regulates the host response leading to brain damage as a consequence of bacterial meningitis is largely unknown.We used an infant rat model of pneumococcal meningitis to assess gene expression profiles in cortex and hippocampus at 22 and 44 hours after infection and in controls at 22 h after mock-infection with saline. To analyze the biological significance of the data generated by Affymetrix DNA microarrays, a bioinformatics pipeline was used combining (i) a literature-profiling algorithm to cluster genes based on the vocabulary of abstracts indexed in MEDLINE (NCBI) and (ii) the self-organizing map (SOM), a clustering technique based on covariance in gene expression kinetics. RESULTS: Among 598 genes differentially regulated (change factor > or = 1.5; p < or = 0.05), 77% were automatically assigned to one of 11 functional groups with 94% accuracy. SOM disclosed six patterns of expression kinetics. Genes associated with growth control/neuroplasticity, signal transduction, cell death/survival, cytoskeleton, and immunity were generally upregulated. In contrast, genes related to neurotransmission and lipid metabolism were transiently downregulated on the whole. The majority of the genes associated with ionic homeostasis, neurotransmission, signal transduction and lipid metabolism were differentially regulated specifically in the hippocampus. Of the cell death/survival genes found to be continuously upregulated only in hippocampus, the majority are pro-apoptotic, while those continuously upregulated only in cortex are anti-apoptotic. CONCLUSION: Temporal and spatial analysis of gene expression in experimental pneumococcal meningitis identified potential targets for therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: A polymorphism of the GH receptor (GHR) gene resulting in genomic deletion of exon 3 (GHR-d3) has been associated with responsiveness to GH therapy. However, the data reported so far do vary according to the underlying condition, replacement dose, and duration of the treatment. OBJECTIVE, DESIGN: The aim of this study was to analyze the impact of the GHR genotypes in terms of the initial height velocity (HV) resulting from treatment and the impact upon adult height in patients suffering from severe isolated GH deficiency. CONTROLS, PATIENTS, SETTING: A total of 181 subjects (peak stimulated GH

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In patients with coronary artery disease (CAD), a well grown collateral circulation has been shown to be important. The aim of this prospective study using peripheral blood monocytes was to identify marker genes for an extensively grown coronary collateral circulation. METHODS: Collateral flow index (CFI) was obtained invasively by angioplasty pressure sensor guidewire in 160 individuals (110 patients with CAD, and 50 individuals without CAD). RNA was extracted from monocytes followed by microarray-based gene-expression analysis. 76 selected genes were analysed by real-time polymerase chain reaction (PCR). A receiver operating characteristics analysis based on differential gene expression was then performed to separate individuals with poor (CFI<0.21) and well-developed collaterals (CFI>or=0.21) Thereafter, the influence of the chemokine MCP-1 on the expression of six selected genes was tested by PCR. RESULTS: The expression of 203 genes significantly correlated with CFI (p = 0.000002-0.00267) in patients with CAD and 56 genes in individuals without CAD (p = 00079-0.0430). Biological pathway analysis revealed 76 of those genes belonging to four different pathways: angiogenesis, integrin-, platelet-derived growth factor-, and transforming growth factor beta-signalling. Three genes in each subgroup differentiated with high specificity among individuals with low and high CFI (>or=0.21). Two out of these genes showed pronounced differential expression between the two groups after cell stimulation with MCP-1. CONCLUSIONS: Genetic factors play a role in the formation and the preformation of the coronary collateral circulation. Gene expression analysis in peripheral blood monocytes can be used for non-invasive differentiation between individuals with poorly and with well grown collaterals. MCP-1 can influence the arteriogenic potential of monocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver fibrosis is characterized by high expression of the key profibrogenic cytokine transforming growth factor (TGF)-beta and the natural tissue inhibitor of metalloproteinases (TIMP)-1, leading to substantial accumulation of extracellular matrix. Liver fibrosis originates from various chronic liver diseases, such as chronic viral hepatitis that, to date, cannot be treated sufficiently. Thus, novel therapeutics, for example, those derived from Oriental medicine, have gained growing attention. In Korea, extracts prepared from Lindera obtusiloba are used for centuries for treatment of inflammation, improvement of blood circulation and prevention of liver damage, but experimental evidence of their efficacy is lacking. We studied direct antifibrotic effects in activated hepatic stellate cells (HSCs), the main target cell in the fibrotic liver. L. obtusiloba extract (135 mug/ml) reduced the de novo DNA synthesis of activated rat and human HSCs by about 90%, which was not accompanied by cytotoxicity of HSC, primary hepatocytes and HepG2 cells, pointing to induction of cellular quiescence. As determined by quantitative polymerase chain reaction, simultaneous treatment of HSCs with TGF-beta and L. obtusiloba extract resulted in reduction of TIMP-1 expression to baseline level, disruption of the autocrine loop of TGF-beta autoinduction and increased expression of fibrolytic matrix metalloproteinase (MMP)-3. In addition, L. obtusiloba reduced gelatinolytic activity of HSC by interfering with profibrogenic MMP-2 activity. Since L. obtusiloba extract prevented intracellular oxidative stress experimentally induced by tert-butylhydroperoxide, we concluded that the direct antifibrotic effect of L. obtusiloba extract might be mediated by antioxidant activity. Thus, L. obtusiloba, traditionally used in Oriental medicine, may complement treatment of chronic liver disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: It is estimated that 3-30% of cases with isolated GH deficiency (IGHD) have a genetic etiology, with a number of mutations being reported in GH1 and GHRHR. The aim of our study was to genetically characterize a cohort of patients with congenital IGHD and analyze their characteristics. PATIENTS AND METHODS: A total of 224 patients (190 pedigrees) with IGHD and a eutopic posterior pituitary were screened for mutations in GH1 and GHRHR. To explore the possibility of an association of GH1 abnormalities with multiple pituitary hormone deficiencies, we have screened 62 patients with either multiple pituitary hormone deficiencies (42 pedigrees), or IGHD with an ectopic posterior pituitary (21 pedigrees). RESULTS: Mutations in GH1 and GHRHR were identified in 41 patients from 21 pedigrees (11.1%), with a higher prevalence in familial cases (38.6%). These included previously described and novel mutations in GH1 (C182X, G120V, R178H, IVS3+4nt, a>t) and GHRHR (W273S, R94L, R162W). Autosomal dominant, type II IGHD was the commonest form (52.4%), followed by type IB (42.8%) and type IA (4.8%). Patients with type II IGHD had highly variable phenotypes. There was no difference in the endocrinology or magnetic resonance imaging appearance between patients with and without mutations, although those with mutations presented with more significant growth failure (height, -4.7 +/- 1.6 SDS vs. -3.4 +/- 1.7 SDS) (P = 0.001). There was no apparent difference between patients with mutations in GH1 and GHRHR. CONCLUSIONS: IGHD patients with severe growth failure and a positive family history should be screened for genetic mutations; the evolving endocrinopathy observed in some of these patients suggests the need for long-term follow-up.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute administration of a mononclonal antibody (mAb) raised against the CD11d subunit of the leukocyte CD11d/CD18 integrin after spinal cord injury (SCI) in the rat greatly improves neurological outcomes. We have profiled gene expression in anti-CD11d and isotyped-matched control mAb-treated rats after SCI. Microarray analysis demonstrated reduced expression of pro-inflammatory cytokines and increased expression of inflammatory mediators that promote wound healing and the expression of scar proteins predicted to improve nerve growth. These changes in gene expression may reflect changes in the types of macrophages that populate the lesions in anti-CD11d mAb-treated rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the aquatic environment, fish are exposed to various stimuli at once and have developed different response mechanisms to deal with these multiple stimuli. The current study assessed the combined impacts of estrogens and bacterial infection on the physiological status of fish. Juvenile rainbow trout were exposed to two different concentrations of 17 beta-estradiol (E2) (2 or 20 mg/kg feed) and then infected with three concentrations of Yersinia ruckeri, a bacterial pathogen causing massive losses in wild and farmed salmonid populations. Organism-level endpoints to assess the impact of the single and combined treatments included hepatic vitellogenin transcript expression to evaluate the E2 exposure efficiency and survival rate of pathogen-challenged fish. The two E2 doses increased vitellogenin levels within the physiological range. Infection with Y. ruckeri caused mortality of trout, and this effect was significantly enhanced by a simultaneous exposure to high E2 dose. The hormone reduced survival at intermediate and high (10(4) and 10(6) colony forming units, cfu) bacterial concentrations, but not for a low one (10(2) cfu). Analysis of hepatic gene expression profiles by a salmonid 2 k cDNA microarray chip revealed complex regulations of pathways involved in immune responses, stress responses, and detoxicification pathways. E2 markedly reduced the expression of several genes implicated in xenobiotic metabolism. The results suggest that the interaction between pathogen and E2 interfered with the fish's capability of clearing toxic compounds. The findings of the current study add to our understanding of multiple exposure responses in fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. RESULTS In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26 °C cold shock or to continuous growth at 37 °C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26 °C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB) indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26 °C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. CONCLUSION Cold shock at a physiologically relevant temperature of 26 °C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desmosomes are cell adhesion junctions required for the normal development and maintenance of mammalian tissues and organs such as the skin, skin appendages, and the heart. The goal of this study was to investigate how desmocollins (DSCs), transmembrane components of desmosomes, are regulated at the transcriptional level. We hypothesized that differential expression of the Dsc2 and Dsc3 genes is a prerequisite for normal development of skin appendages. We demonstrate that plakoglobin (Pg) in conjunction with lymphoid enhancer-binding factor 1 (Lef-1) differentially regulates the proximal promoters of these two genes. Specifically, we found that Lef-1 acts as a switch activating Dsc2 and repressing Dsc3 in the presence of Pg. Interestingly, we also determined that NF-κB pathway components, the downstream effectors of the ectodysplasin-A (EDA)/ ectodysplasin-A receptor (EDAR)/NF-κB signaling cascade, can activate Dsc2 expression. We hypothesize that Lef-1 and EDA/EDAR/NF-κB signaling contribute to a shift in Dsc isoform expression from Dsc3 to Dsc2 in placode keratinocytes. It is tempting to speculate that this shift is required for the invasive growth of placode keratinocytes into the dermis, a crucial step in skin appendage formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human growth hormone (GH) causes a variety of physiological and metabolic effects in humans and plays a pivotal role in postnatal growth. In somatotroph cells of the anterior pituitary, GH is stored in concentrated forms in secretory granules to be rapidly released upon GH-releasing hormone stimulation. During the process of secretory granule biogenesis, self-association of GH occurs in the compartments of the early secretory pathway (endoplasmic reticulum and Golgi complex). Since this process is greatly facilitated by the presence of zinc ions, it is of importance to understand the potential role of zinc transporters that participate in the fine-tuning of zinc homeostasis and dynamics, particularly in the early secretory pathway. Thus, the role of zinc transporters in supplying the secretory pathway with the sufficient amount of zinc required for the biogenesis of GH-containing secretory granules is essential for normal secretion. This report, illustrated by a clinical case report on transient neonatal zinc deficiency, focuses on the role of zinc in GH storage in the secretory granules and highlights the role of specific zinc transporters in the early secretory pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human GH has two disulfide bridges linking Cys-53 to Cys-165 and Cys-182 to Cys-189. Although absence of the first disulfide bridge has been shown to affect the bioactivity of GH in transgenic mice, little is known of the importance of this bridge in mediating the GH/GH-receptor (GHR) interaction in humans. However, we have identified a missense mutation (G705C) in the GH1 gene of a Serbian patient. This mutation was found in the homozygous state and leads to the absence of the disulfide bridge Cys-53 to Cys-165. To study the impact of this mutation in vitro, GHR binding and Janus kinase (Jak)2/signal transducer and activator of transcription (Stat)5 activation experiments were performed, in which it was observed that at physiological concentrations (3-50 ng/ml) both GHR binding and Jak2/Stat5 signaling pathway activation were significantly reduced in the mutant GH-C53S, compared with wild-type (wt)-GH. Higher concentrations (400 ng/ml) were required for this mutant to elicit responses similar to wt-GH. These results demonstrate that the absence of the disulfide bridge Cys-53 to Cys-165 affects the binding affinity of GH for the GHR and subsequently the potency of GH to activate the Jak2/Stat5 signaling pathway. In conclusion, we have demonstrated that GH-C53S is a bioinactive GH at the physiological range and that the disulfide bridge Cys-53 to Cys-163 is required for mediating the biological effects of GH.