942 resultados para Botulinum toxin-A
Resumo:
Cylindrospermopsin (CYN), a potent cyanobacterial hepatotoxin produced by Cylindrospermopsis raciborskii and other cyanobacteria, is regularly found in water supplies in many parts of the world and has been associated with the intoxication of humans and livestock.Water treatment via chlorination can degrade the toxin effectively but result in the production of several byproducts. In this study, male and female Balb/c mice were injected via the intraperitoneal (IP) route with a single dose of 10 mg/kg 5-chlorouracil and 10 mg/kg 5-chloro-6-hydroxymethyluracil; these two compounds are the predicted chlorinated degradation products of CYN.DNA was isolated from the mouse livers and examined for strand breakage by alkaline gel electrophoresis (pH 12). The median molecular length (MML) of the DNA distributed in the gel was determined by estimating the midpoint of the DNA size distribution by densitometry. The toxicity of 5-chlorouracil (as measured by DNA strand breakage) was significantly influenced by time from dosing. There was no significant difference in MML between mice dosed with 5-chloro-6-hydroxymethyluracil and the controls. In another experiment, mice were dosed with 0, 0.1, 1, 10 and 100 mg/kg body weight 5-chlorouracil and 0, 0.1, 1, 10 and 20 mg/kg 5-chloro-6-hydroxymethyluracil via IP injection. The heart, liver, kidney, lung and spleen were removed, fixed and examined under electron microscopy. Liver was the main target organ. The EM results revealed marked distortion on the nuclear membrane of liver cells in mice dosed with 1.0 mg/kg 5-chlorouracil or 10 mg/kg 5-chloro-6-hydroxymethyluracil, or higher.
Resumo:
Aquatic toxins are responsible for a number of acute and chronic diseases in humans. Okadaic acid (OA) and other dinoflagellate derived polyketide toxins pose serious health risks on a global scale. Ingestion of OA contaminated shellfish causes diarrheic shellfish poisoning (DSP). Some evidence also suggests tumor promotion in the liver by OA. Microcystin-LR (MC-LR) is produced by cyanobacteria and is believed to be the most common freshwater toxin in the US. Humans may be exposed to this acute hepatotoxin through drinking or recreational use of contaminated waters. ^ OA producing dinoflagellates have not been cultured axenically. The presence of associated bacteria raises questions about the ultimate source of OA. Identification of the toxin-producing organism(s) is the first step in identifying the biosynthetic pathways involved in toxin production. Polyketide synthase (PKS) genes of toxic and non-toxic species were surveyed by construction of clonal libraries from PCR amplicons of various toxic and non-toxic species of Prorocentrum in an effort to identify genes, which may be part of the biosynthetic pathway of OA. Analysis of the PKS sequences revealed that toxic species shared identical PKS genes not present in non-toxic species. Interestingly, the same PKS genes were identified in a library constructed from associated bacteria. ^ Subsequent bacterial small subunit RNA (16S) clonal libraries identified several common bacterial species. The most frequent 16S sequences found were identified as species of the genus Roseobacter which has previously been implicated in the production of OA. Attempts to culture commonly occurring bacteria resulted in the isolation of Oceanicaulis alexandrii , a novel marine bacterium previously isolated from the dinoflagellate Alexandrium tamarense, from both P. lima, and P. hoffmanianum. ^ Metabolic studies of microcystin-LR, were conducted to probe the activity of the major human liver cytochromes (CYP) towards the toxin. CYPs may provide alternate routes of detoxification of toxins when the usual routes have been inhibited. For example, some research indicates that cyanobacterial xenobiotics, in particular, lipopolysaccharides may inhibit glutathione S-transferases allowing the toxin to persist long enough to be acted upon by other enzymes. These studies found that at least one human liver CYP was capable of metabolizing the toxin. ^
Resumo:
Metarhizium anisopliae is an entomopathogenic fungus relevant in biotechnology with applications like malaria vector control. Studies of its virulence factors are therefore of great interest. Fungal ribotoxins are toxic ribonucleases with extraordinary efficiency against target ribosomes and suggested as potential insecticides. Here, we describe this ribotoxin characteristic activity in M. anisopliae cultures. Anisoplin has been obtained as a recombinant protein and further characterized. It is structurally similar to hirsutellin A, the ribotoxin from the entomopathogen Hirsutella thompsonii. Moreover, anisoplin shows the ribonucleolytic activity typical of ribotoxins and cytotoxicity against insect cells. How Metarhizium uses this toxin and possible applications are on perspective.
Resumo:
Breast and ovarian cancers are among the leading causes of cancer related deaths in women worldwide. In a subset of these cancers, dysregulation of the human epidermal growth factor receptor 2 (HER2) leads to overexpression of the receptor on the cell surface. Previous studies have found that these HER2+ cancers show high rates of progression to metastatic disease. Metastasis is driven by cytoskeletal rearrangements that produce filamentous actin (F-actin) based structures that penetrate and degrade extracellular matrix to facilitate tumour invasion. Advancements in targeted therapy have made F-actin an attractive target for the development of new cancer therapies. In this thesis, we tested the actin-depolymerizing macrolide toxin, Mycalolide B (MycB), as a potential warhead for a novel antibody drug conjugate (ADC) to target highly metastatic HER2+ breast and ovarian cancers. We found that MycB treatment of HER2+ breast (SKBR3, MDA-MB-453) and ovarian (SKOV3) cancer cells led to loss of viability (IC50 values ≤ 64 nM). Sub-lethal doses of MycB treatment caused potent suppression of leading edge protrusions, migration and invasion potential of HER2+ cancer cells (IC50 ≤ 32 nM). In contrast, other F-actin based processes such as receptor endocytosis were less sensitive to MycB treatment. MycB treatment skewed the size of endocytic vesicles, which may reflect defects in F-actin based vesicle motility or maturation. Given that HER2+ cancers have been effectively targeted by Trastuzumab and Trastuzumab-based ADCs, we tested the effects of a combination of Trastuzumab and MycB on cell migration and invasion. We found that MycB/ Trastuzumab combination treatments inhibited motility of SKOV3 cells to a greater degree than either treatment alone. Altogether, our results provide proof-of-principle that actin toxins such as MycB can be used as a novel class of warheads for ADCs to target and combat highly metastatic cancers.
Resumo:
Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n = 256) from European waters, collected 2009–2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2 × 2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray.