984 resultados para Botany|Microbiology|Plant Pathology
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references (p. [57]-62, 340).
Resumo:
Stafleu and Cowan, 2d ed.
Resumo:
Mode of access: Internet.
Resumo:
The thiol tripeptides, glutathione (GSH) and homoglutathione (hGSH), perform multiple roles in legumes, including protection against toxicity of free radicals and heavy metals. The three genes involved in the synthesis of GSH and hGSH in the model legume, Lotus japonicus, have been fully characterized and appear to be present as single copies in the genome. The gamma-glutamylcysteine synthetase (gammaecs) gene was mapped on the long arm of chromosome 4 (70.0 centimorgans [cM]) and consists of 15 exons, whereas the glutathione synthetase (gshs) and homoglutathione synthetase (hgshs) genes were mapped on the long arm of chromosome 1 (81.3 cM) and found to be arranged in tandem, with a separation of approximately 8 kb. Both genes consist of 12 exons of exactly the same size (except exon 1, which is similar). Two types of transcripts were detected for the gshs gene, which putatively encode proteins localized in the plastids and cytosol. Promoter regions contain cis-acting regulatory elements that may be involved in the plant's response to light, hormones, and stress. Determination of transcript levels, enzyme activities, and thiol contents in nodules, roots, and leaves revealed that gammaecs and hgshs are expressed in all three plant organs, whereas gshs is significantly functional only in nodules. This strongly suggests an important role of GSH in the rhizobia-legume symbiosis.
Resumo:
Single-copy restriction fragment length polymorphism (RFLP) markers were used to determine the genetic structure of the global population of Mycosphaerella musicola, the cause of Sigatoka (yellow Sigatoka) disease of banana. The isolates of M. musicola examined were grouped into four geographic populations representing Africa, Latin America and the Caribbean, Australia and Indonesia. Moderate levels of genetic diversity were observed for most of the populations (H = 0.22-0.44). The greatest genetic diversity was found in the Indonesian population (H = 0.44). Genotypic diversity was close to 50% in all populations. Population differentiation tests showed that the geographic populations of Africa, Latin America and the Caribbean, Australia and Indonesia were genetically different populations. Using F-ST tests, very high levels of genetic differentiation were detected between all the population pairs (F-ST > 0.40), with the exception of the Africa and Latin America-Caribbean population pair. These two populations differed by only 3% (F-ST = 0.03), and were significantly different (P < 0.05) from all other population pairs. The high level of genetic diversity detected in Indonesia in comparison to the other populations provides some support for the theory that M. musicola originated in South-east Asia and that M. musicola populations in other regions were founded by isolates from the South-east Asian region. The results also suggest the migration of M. musicola between Africa and the Latin America-Caribbean region.
Resumo:
DNA of Leifsonia xyli subsp. xyli (Lxx), the causal agent of ratoon stunting disease of sugarcane, was detected in the fibrovascular fluid of sugarcane plants using random amplified polymorphic DNA PCR-based amplification using two 10-mer oligonucleotide primers. The primers OPC-02 and OPC-11 produced Lxx-specific markers of approximately 800 bp and 1000 bp, respectively. A cloned DNA fragment from the 800 bp PCR product (pSKC2-800) hybridised to a single genomic DNA fragment from Lxx when used as a probe in Southern hybridisation. This cloned fragment did not hybridise to L. xyli subsp. cynodontis (Lxc), or L. xyli-like bacteria isolated from grasses in Australia, indicating the usefulness of this DNA fragment as a specific probe for Lxx. A cloned fragment from the 1000 bp PCR product ( pSKC11-1000) hybridised to three genomic fragments in Lxx isolates, one genomic fragment in two of the four isolates of L. xyli-like bacteria, and in two of the four isolates of Lxc isolated from the USA. These results indicate that L. xyli-like bacteria are more likely to be related to Lxc than Lxx. These probes did not hybridise to the DNA from strains of the species of Clavibacter, Rathayibacter, Acidovorax, Ralstonia, Pseudomonas and Xanthomonas tested. Two oligonucleotide primers (21-mer) designed from the pSKC2-800 sequences specifically amplified template DNA from Lxx and detected as few as 5 x 10(4) cells/mL in fibrovascular fluid from sugarcane plants infected with Lxx.
Resumo:
Phytophthora root rot, caused by Phytophthora medicaginis, is a major limitation to lucerne production but it can be managed through the use of resistant cultivars. Current resistance screening methods, using mature plants or post-emergence seedling assays, are costly and time consuming. The use of zoospore inoculum on detached leaves and intact cotyledons as an assay for plant resistance was assessed using genetically defined segregating populations. The detached leaf assay was a reproducible test, but this test could not be used for accurately predicting root ratings. The cotyledon tests using zoospores gave results at the population level that were indicative of the root responses of 19 cultivars and lines tested. The cotyledon reaction of individual plants also showed a strong association with root response. The cotyledon test, while not completely predictive of mature root responses, allowed the selection of Phytophthora resistant plants at a higher frequency than could be achieved by random selection.
Canopy size and induced resistance in Stylosanthes scabra determine anthracnose severity at high CO2
Resumo:
To establish the identity of Fusarium species associated with head blight (FHB) and crown rot (CR) of wheat, samples were collected from wheat paddocks with different cropping history in southern Queensland and northern New South Wales during 2001. CR was more widespread but FHB was only evident in northern NSW and often occurred with CR in the same paddock. Twenty different Fusarium spp. were identified from monoconidial isolates originating from different plant parts by using morphology and species-specific PCR assays. Fusarium pseudograminearum constituted 48% of all isolates and was more frequently obtained from the crown, whereas Fusarium graminearum made up 28% of all isolates and came mostly from the head. All 17 Fusarium species tested caused FHB and all 10 tested caused CR in plant infection assays, with significant (P < 0.001) difference in aggressiveness among species and among isolates within species for both diseases. Overall, isolates from stubble and crown were more aggressive for CR, whereas isolates from the flag leaf node were more aggressive for FHB. Isolates that were highly aggressive in causing CR were those originating from paddocks with wheat following wheat, whereas those from fields with wheat following maize or sorghum were highly aggressive for FHB. Although 20% of isolates caused severe to highly severe FHB and CR, there was no significant (P < 0.32) correlation between aggressiveness for FHB and CR. Given the ability of F. graminearum to colonise crowns in the field and to cause severe CR in bioassays, it is unclear why this pathogen is not more widely distributed in Australia.
Resumo:
The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.
Resumo:
Two species of Ganoderma belonging to different subgenera which cause disease on oil palms in PNG are identified by basidiome morphology and the morphology of their basidiospores. The names G. boninense and G. tornatum have been applied. Significant pleiomorphy was observed in basidiome characters amongst the specimens examined. This variation in most instances did not correlate well with host or host status. Sporemorphology appeared uniform within a species and spore indices varied only slightly. G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms in Papua New Guinea.
Resumo:
An analysis of the historic H1 subtype, H1-1, in eight legumes belonging to four genera of the tribe Vicieae (Pisum, Lathyrus, Lens, and Vicia), revealed an extended region consisting of the tandemly repeated AKPAAK motifs. We named this region the Regular zone (RZ). The AKPAAK motifs are organized into two blocks separated by a short (two or six amino acids) intervening sequence (IS). The distal block contains six AKPAAK motifs, while the number of repeats in the proximal block varies from six in V. faba to seven in the other species. In V. hirsuta, the first two repeated units of the proximal block are octapeptides AKAKPAAK. The apparent rate of synonymous substitutions in the blocks of RZ is much higher than in the rest of the gene. This can be explained by repeat shuffling within each block. In the C-domain of the orthologous H1 subtype froth Medicago truncatula (tribe Trifolieae), a region corresponding to the RZ of Vicieae species was found. It also consists of two blocks of AKPAAK motifs (four and three repeats in the proximal and distal blocks, respectively). These blocks are separated by a 20-amino acid IS. The first 20 amino acids of the Medicago RZ are not part of AKPAAK repeats. We hypothesise that the RZ has most probably evolved as a result of an expansion of AKPAAK repeats from two separate sites in the C-domain. This process started tens of millions of years ago and was most likely directed by positive selection.
Resumo:
The inheritance of resistance to root-lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half-diallel design of F-1 and F-2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line 'GS50a', the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F-1 and F-2 populations. The synthetic hexaploid wheat line 'CPI133872' was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than 'GS50a'. The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes.
Resumo:
Seventy sorghum inbred lines which formed part of the Queensland Department of Primary Industries (QDPI) sorghum breeding program were screened with 104 previously mapped RFLP markers. The lines were related by pedigree and consisted of ancestral source lines, intermediate lines and recent releases from the program. We compared the effect of defining marker alleles using either identity by state (IBS) or identity by descent (IBD) on our capacity to trace markers through the pedigree and detect evidence of selection for particular alleles. Allelic identities defined using IBD were much more sensitive for detecting non-Mendelian segregation in this pedigree. Only one marker allele showed significant evidence of selection when IBS was used compared with ten regions with particular allelic identities when IBD was used. Regions under selection were compared with the location of QTLs for agronomic traits known to be under selection in the breeding program. Only two of the ten regions were associated with known QTLs that matched with knowledge of the agronomic characteristics of the ancestral lines. Some of the other regions were hypothesised to be associated with genes for particular traits based on the properties of the ancestral source lines.