985 resultados para Blood gas
Resumo:
Despite the compelling case for moving towards cloud computing, the upstream oil & gas industry faces several technical challenges—most notably, a pronounced emphasis on data security, a reliance on extremely large data sets, and significant legacy investments in information technology (IT) infrastructure—that make a full migration to the public cloud difficult at present. Private and hybrid cloud solutions have consequently emerged within the industry to yield as much benefit from cloud-based technologies as possible while working within these constraints. This paper argues, however, that the move to private and hybrid clouds will very likely prove only to be a temporary stepping stone in the industry’s technological evolution. By presenting evidence from other market sectors that have faced similar challenges in their journey to the cloud, we propose that enabling technologies and conditions will probably fall into place in a way that makes the public cloud a far more attractive option for the upstream oil & gas industry in the years ahead. The paper concludes with a discussion about the implications of this projected shift towards the public cloud, and calls for more of the industry’s services to be offered through cloud-based “apps.”
Resumo:
A numerical simulation method for the Red Blood Cells’ (RBC) deformation is presented in this study. The two-dimensional RBC membrane is modeled by the spring network, where the elastic stretch/compression energy and the bending energy are considered with the constraint of constant RBC surface area. Smoothed Particle Hydrodynamics (SPH) method is used to solve the Navier-Stokes equation coupled with the Plasma-RBC membrane and Cytoplasm- RBC membrane interaction. To verify the method, the motion of a single RBC is simulated in Poiseuille flow and compared with the results reported earlier. Typical motion and deformation mechanism of the RBC is observed.
Resumo:
Purpose The aim was to assess the effects of a Tai Chi based program on health related quality of life (HR-QOL) in people with elevated blood glucose or diabetes who were not on medication for glucose control. Method 41 participants were randomly allocated to either a Tai Chi intervention group (N = 20) or a usual medical care control group (N = 21). The Tai Chi group involved 3 x 1.5 hour supervised and group-based training sessions per week for 12 weeks. Indicators of HR-QOL were assessed by self-report survey immediately prior to and after the intervention. Results There were significant improvements in favour of the Tai Chi group for the SF36 subscales of physical functioning (mean difference = 5.46, 95% CI = 1.35-9.57, P < 0.05), role physical (mean difference = 18.60, 95% CI = 2.16-35.05, P < 0.05), bodily pain (mean difference = 9.88, 95%CI = 2.06-17.69, P < 0.05) and vitality (mean difference = 9.96, 95% CI = 0.77-19.15, P < 0.05). Conclusions The findings show that this Tai Chi program improved indicators of HR-QOL including physical functioning, role physical, bodily pain and vitality in people with elevated blood glucose or diabetes who were not on diabetes medication.
Resumo:
The micro-circulation of blood plays an important role in human body by providing oxygen and nutrients to the cells and removing carbon dioxide and wastes from the cells. This process is greatly affected by the rheological properties of the Red Blood Cells (RBCs). Changes in the rheological properties of the RBCs are caused by certain human diseases such as malaria and sickle cell diseases. Therefore it is important to understand the motion and deformation mechanism of RBCs in order to diagnose and treat this kind of diseases. Although, many methods have been developed to explore the behavior of the RBCs in micro-channels, they could not explain the deformation mechanism of the RBCs properly. Recently developed Particle Methods are employed to explain the RBCs’ behavior in micro-channels more comprehensively. The main objective of this study is to critically analyze the present methods, used to model the RBC behavior in micro-channels, in order to develop a computationally efficient particle based model to describe the complete behavior of the RBCs in micro-channels accurately and comprehensively
Resumo:
Despite the compelling case for moving towards cloud computing, the upstream oil & gas industry faces several technical challenges—most notably, a pronounced emphasis on data security, a reliance on extremely large data sets, and significant legacy investments in information technology infrastructure—that make a full migration to the public cloud difficult at present. Private and hybrid cloud solutions have consequently emerged within the industry to yield as much benefit from cloud-based technologies as possible while working within these constraints. This paper argues, however, that the move to private and hybrid clouds will very likely prove only to be a temporary stepping stone in the industry's technological evolution. By presenting evidence from other market sectors that have faced similar challenges in their journey to the cloud, we propose that enabling technologies and conditions will probably fall into place in a way that makes the public cloud a far more attractive option for the upstream oil & gas industry in the years ahead. The paper concludes with a discussion about the implications of this projected shift towards the public cloud, and calls for more of the industry's services to be offered through cloud-based “apps.”
Resumo:
Bovine colostrum has been shown to influence the cytokine production of bovine leukocytes. However, it remains unknown whether processed bovine colostrum, a supplement popular among athletes to enhance immune function, is able to modulate cytokine secretion of human lymphocytes and monocytes. The aim of this investigation was to determine the influence of a commercially available bovine colostrum protein concentrate (CPC) to stimulate cytokine production by human peripheral blood mononuclear cells (PBMCs). Blood was sampled from four healthy male endurance athletes who had abstained from exercise for 48 h. PBMCs were separated and cultured with bovine CPC concentrations of 0 (control), 1.25, 2.5, and 5% with and without lipopolysaccharide (LPS) (3 microg/mL) and phytohemagglutinin (PHA) (2.5 microg/mL). Cell supernatants were collected at 6 and 24 h of culture for the determination of tumor necrosis factor (TNF), interferon (IFN)-gamma, interleukin (IL)-10, IL-6, IL-4, and IL-2 concentrations. Bovine CPC significantly stimulated the release of IFN-gamma, IL-10, and IL-2 (p < 0.03). The addition of LPS to PBMCs cocultured with bovine CPC significantly stimulated the release of IL-2 and inhibited the early release of TNF, IL-6, and IL-4 (p < 0.02). Phytohemagglutinin stimulation in combination with bovine CPC significantly increased the secretion of IL-10 and IL-2 at 6 h of culture and inhibited IFN-gamma and TNF (p < 0.05). This data show that a commercial bovine CPC is able to modulate in vitro cytokine production of human PBMCs. Alterations in cytokine secretion may be a potential mechanism for reported benefits associated with supplementation.
Resumo:
PURPOSE. To evaluate the utility of blood cultures in the assessment of early postoperative fever in hip fracture patients with no other indicators of sepsis. METHODS. 101 blood cultures were drawn on postoperative days 0 to 5 to investigate 84 febrile episodes in 31 women and 30 men (mean age, 80 years) whose body temperature measured via the tympanic route was ≥38ºC. Culture results of these 61 patients were divided into culture-positive and culture-negative groups for comparison. RESULTS. Of the 101 blood cultures, only 2 were positive: one was obtained 5 days after dynamic hip screw fixation, and the other 4 days after hemiarthroplasty. Both blood cultures grew coagulase-negative staphylococcal species, which were deemed to be skin contaminants not requiring change of patient management. 44 of these patients were treated with oral or intravenous antibiotics for a period of time. CONCLUSION. The risk of bacteraemia in patients with postoperative fever but no other symptoms of infection is low. Routine procurement of blood cultures in such patients is ineffective and of limited utility.
Resumo:
The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to measure the effect of gas density on regional ventilation distribution. Methods Ventilation distribution was measured in seven rats using electrical impedance tomography (EIT) in supine, prone, left and right lateral positions while being mechanically ventilated with either air, heliox (30% oxygen, 70% helium) or sulfur hexafluoride (20% SF6, 20% oxygen, 60% air). The effect of gas density on regional ventilation distribution was assessed. Results Gas density did not impact on regional ventilation distribution. The non-dependent lung was better ventilated in all four body positions. Gas density had no further impact on regional filling characteristics. The filling characteristics followed an anatomical pattern with the anterior and left lung showing a greater impedance change during the initial phase of the inspiration. Conclusion It was shown that gas density did not impact on convection dependent ventilation distribution in rats measured with EIT.
Resumo:
Purpose – The purpose of this paper is to examine the environmental disclosure initiatives of Niko Resources Ltd – a Canada-based multinational oil and gas company – following the two major environmental blowouts at a gas field in Bangladesh in 2005. As part of the examination, the authors particularly focus on whether Niko's disclosure strategy was associated with public concern pertaining to the blowouts. Design/methodology/approach – The authors reviewed news articles about Niko's environmental incidents in Bangladesh and Niko's communication media, including annual reports, press releases and stand-alone social responsibility report over the period 2004-2007, to understand whether news media attention as proxy for public concern has an impact on Niko's disclosure practices in relation to the affected local community in Bangladesh. Findings – The findings show that Niko did not provide any non-financial environmental information within its annual reports and press releases as a part of its responsibility to the local community which was affected by the blowouts, but it did produce a stand-alone report to address the issue. However, financial environmental disclosures, such as the environmental contingent liability disclosure, were adequately provided through annual reports to meet the regulatory requirements concerning environmental persecutions. The findings also suggest that Niko's non-financial disclosure within a stand-alone report was associated with the public pressures as measured by negative media coverage towards the Niko blowouts. Research limitations/implications – This paper concludes that the motive for Niko's non-financial environmental disclosure, via a stand-alone report, reflected survival considerations: the company's reaction did not suggest any real attempt to hold broader accountability for its activities in a developing country.
Resumo:
Small-angle and ultra-small-angle neutron scattering (SANS and USANS), low-pressure adsorption (N2 and CO2), and high-pressure mercury intrusion measurements were performed on a suite of North American shale reservoir samples providing the first ever comparison of all these techniques for characterizing the complex pore structure of shales. The techniques were used to gain insight into the nature of the pore structure including pore geometry, pore size distribution and accessible versus inaccessible porosity. Reservoir samples for analysis were taken from currently-active shale gas plays including the Barnett, Marcellus, Haynesville, Eagle Ford, Woodford, Muskwa, and Duvernay shales. Low-pressure adsorption revealed strong differences in BET surface area and pore volumes for the sample suite, consistent with variability in composition of the samples. The combination of CO2 and N2 adsorption data allowed pore size distributions to be created for micro–meso–macroporosity up to a limit of �1000 Å. Pore size distributions are either uni- or multi-modal. The adsorption-derived pore size distributions for some samples are inconsistent with mercury intrusion data, likely owing to a combination of grain compression during high-pressure intrusion, and the fact that mercury intrusion yields information about pore throat rather than pore body distributions. SANS/USANS scattering data indicate a fractal geometry (power-law scattering) for a wide range of pore sizes and provide evidence that nanometer-scale spatial ordering occurs in lower mesopore–micropore range for some samples, which may be associated with inter-layer spacing in clay minerals. SANS/USANS pore radius distributions were converted to pore volume distributions for direct comparison with adsorption data. For the overlap region between the two methods, the agreement is quite good. Accessible porosity in the pore size (radius) range 5 nm–10 lm was determined for a Barnett shale sample using the contrast matching method with pressurized deuterated methane fluid. The results demonstrate that accessible porosity is pore-size dependent.
Resumo:
Compression ignition (CI) engine design is subject to many constraints which presents a multi-criteria optimisation problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient, but must also deliver low gaseous, particulate and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming are minimised. Consequently, this study undertakes a multi-criteria analysis which seeks to identify alternative fuels, injection technologies and combustion strategies that could potentially satisfy these CI engine design constraints. Three datasets are analysed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of 1): an ethanol fumigation system, 2): alternative fuels (20 % biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and 3): various biodiesel fuels made from 3 feedstocks (i.e. soy, tallow, and canola) tested at several blend percentages (20-100 %) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20 % by energy) at moderate load, high percentage soy blends (60-100 %), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most “preferred” solutions to this multi-criteria engine design problem. Further research is, however, required to reduce Reactive Oxygen Species (ROS) emissions with alternative fuels, and to deliver technologies that do not significantly reduce the median diameter of particle emissions.
Resumo:
In this paper, we present how a thin RF sputtered layer of lanthanum oxide (La2O3) can alter electrical and improve hydrogen gas sensing characteristics of Pt/molybdenum oxide (MoO3) nanostructures Schottky diodes. We derived the barrier height, ideality factor and dielectric constant from the measured I–V characteristics at operating temperatures in the range of 25–300 ◦C. The dynamic response, response and recovery times were obtained upon exposure to hydrogen gas at different concentrations. Analysis of the results indicated a substantial improvement to the voltage shift sensitivity of the sensors incorporating the La2O3 layer. We associate this enhancement to the formation of numerous trap states due to the presence of the La2O3 thin film on the MoO3 nanoplatelets. These trap states increase the intensity of the dipolar charges at the metal–semiconductor interface, which induce greater bending of the energy bands. However, results also indicate that the presence of La2O3 trap states also increases response and recover times as electrons trapping and de-trapping processes occur before they can pass through this thin dielectric layer.
Resumo:
Small-angle and ultra-small-angle neutron scattering (SANS and USANS) measurements were performed on samples from the Triassic Montney tight gas reservoir in Western Canada in order to determine the applicability of these techniques for characterizing the full pore size spectrum and to gain insight into the nature of the pore structure and its control on permeability. The subject tight gas reservoir consists of a finely laminated siltstone sequence; extensive cementation and moderate clay content are the primary causes of low permeability. SANS/USANS experiments run at ambient pressure and temperature conditions on lithologically-diverse sub-samples of three core plugs demonstrated that a broad pore size distribution could be interpreted from the data. Two interpretation methods were used to evaluate total porosity, pore size distribution and surface area and the results were compared to independent estimates derived from helium porosimetry (connected porosity) and low-pressure N2 and CO2 adsorption (accessible surface area and pore size distribution). The pore structure of the three samples as interpreted from SANS/USANS is fairly uniform, with small differences in the small-pore range (<2000 Å), possibly related to differences in degree of cementation, and mineralogy, in particular clay content. Total porosity interpreted from USANS/SANS is similar to (but systematically higher than) helium porosities measured on the whole core plug. Both methods were used to estimate the percentage of open porosity expressed here as a ratio of connected porosity, as established from helium adsorption, to the total porosity, as estimated from SANS/USANS techniques. Open porosity appears to control permeability (determined using pressure and pulse-decay techniques), with the highest permeability sample also having the highest percentage of open porosity. Surface area, as calculated from low-pressure N2 and CO2 adsorption, is significantly less than surface area estimates from SANS/USANS, which is due in part to limited accessibility of the gases to all pores. The similarity between N2 and CO2-accessible surface area suggests an absence of microporosity in these samples, which is in agreement with SANS analysis. A core gamma ray profile run on the same core from which the core plug samples were taken correlates to profile permeability measurements run on the slabbed core. This correlation is related to clay content, which possibly controls the percentage of open porosity. Continued study of these effects will prove useful in log-core calibration efforts for tight gas.
Resumo:
The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.
Resumo:
In this paper, we report the development of novel Pt/nanostructured RuO2/SiC Schottky diode based sensors for hydrogen gas applications. The nanostructured ruthenium oxide thin films were deposited on SiC substrates using radio frequency sputtering technique. Scanning electron microscopy revealed the sputtered RuO2 layer consists of nano-cubular structures with dimensions ranging between 10 and 50 nm. X-ray diffraction confirmed the presence of tetragonal ruthenium (IV) oxide, with preferred orientation along the (101) lattice plane. The current-voltage characteristics of the sensors were investigated towards hydrogen gas in synthetic air at different temperatures from 25 °C to 240 °C. The dynamic responses of the sensors were studied at an optimum temperature of 240 °C and a voltage shift of 304 mV was recorded toward 1% hydrogen gas.