917 resultados para Birth of the Soul
Resumo:
Nonsyndromic cleft lip with or without cleft palate (nsCL/P, MIM 119530) is perhaps the most common major birth defect. Homozygous PVRL1 loss-of-function mutations result in an autosomal recessive CL/P syndrome, CLPED1, and a PVRL1 nonsense mutation is associated with sporadic nsCL/P in Northern Venezuela. To address the more general role of PVRL1 variation in risk of nsCL/P, we carried out mutation analysis of PVRL1 in North American and Australian nsCL/P cases and population-matched controls. We identified a total of 15 variants, 5 of which were seen in both populations and 1 of which, an in-frame insertion at Glu442, was more frequent in patients than in controls in both populations, though the difference was not statistically significant. Another variant, which is specific to the PVRL1 beta (HIgR) isoform, S447L, was marginally associated with nsCL/P in North American Caucasian patients, but not in Australian patients, and overall variants that affect the beta-isoform were significantly more frequent among North American patients. One Australian patient had a splice junction mutation of PVRL1. Our results suggest that PVRL1 may play a minor role in susceptibility to the occurrence of nsCL/P in some Caucasian populations, and that variation involving the beta (HIgR) isoform might have particular importance for risk of orofacial clefts. Nevertheless, these results underscore the need for studies that involve very large numbers when assessing the possible role of rare variants in risk of complex traits such as nsCL/P.
Resumo:
Neonatal estrogen treatment of BALB/c mice results in the unregulated proliferation of the cervicovaginal epithelium and eventually tumorigenesis. The conversion of the normally estrogen responsive cyclic proliferation of the vaginal epithelium to a continuous estrogen-independent pattern of growth is a complex phenomenon. The aim of this study was to gain an understanding of the mechanism(s) by which steroid hormone administration during a critical period of development alters the cyclic proliferation of vaginal epithelium, ultimately leading to carcinogenesis in the adult animal.^ The LJ6195 murine cervicovaginal tumor was induced by treating newborn female BALB/c mice with 20 $\mu$g 17$\beta$-estradiol plus 100 $\mu$g progesterone for the first 5 days after birth. In contrast to proliferation of the normal vaginal epithelium, proliferation of LJ6195 is not regulated by estradiol. Northern blot analysis of RNA from vaginal tracts of normal mice, neonatal-estrogen treated mice, and LJ6195 indicate that there is an alteration in the expression of several genes such as the estrogen receptor, c-fos, and HER2/neu. In response to neonatal estrogen treatment, the estrogen receptor is down regulated in the murine vaginal tract. Therefore, the estrogen-independent nature of this tissue is established as early as 3 months after treatment. There is strong evidence that the proliferation of LJ6195 is regulated through an autocrine growth pathway. The LJ6195 tumor expresses mRNA for the epidermal growth factor receptor. In addition, conditioned medium from the LJ6195 tumor cell line contains a growth factor(s) with epidermal growth factor-like activity. Conditioned medium from the LJ6195 cell line stimulated the proliferation of the EGF-dependent COMMA D mouse mammary gland cell line in a dose-dependent manner. The addition of an anti-mEGF-antibody to LJ6195 cell cultures significantly decreased growth. These results suggest that the EGF-receptor mediated growth pathway may play a role in regulating the estrogen-independent proliferation of the LJ6195 tumor. ^
Resumo:
The mammalian Cutl1 gene codes for the CCAAT displacement protein (CDP), which has been implicated as a transcriptional repressor in diverse processes such as terminal differentiation, cell cycle progression, and the control of nuclear matrix attachment regions. To investigate the in vivo function of Cutl1, we have replaced the C-terminal Cut repeat 3 and homeodomain exons with an in-frame lacZ gene by targeted mutagenesis in the mouse. The CDP-lacZ fusion protein is retained in the cytoplasm and fails to repress gene transcription, indicating that the Cutl1(lacZ) allele corresponds to a null mutation. Cutl1 mutant mice on inbred genetic backgrounds are born at Mendelian frequency, but die shortly after birth because of retarded differentiation of the lung epithelia, which indicates an essential role of CDP in lung maturation. A less pronounced delay in lung development allows Cutl1 mutant mice on an outbred background to survive beyond birth. These mice are growth-retarded and develop an abnormal pelage because of disrupted hair follicle morphogenesis. The inner root sheath (IRS) is reduced, and the transcription of Sonic hedgehog and IRS-specific genes is deregulated in Cutl1 mutant hair follicles, consistent with the specific expression of Cutl1 in the progenitors and cell lineages of the IRS. These data implicate CDP in cell-lineage specification during hair follicle morphogenesis, which resembles the role of the related Cut protein in specifying cell fates during Drosophila development.
Resumo:
This participatory action-research project addressed the hypothesis that strengthened community and women's capacity for self-development will lead to action to address maternal health problems and the prevention of maternal morbidity and mortality in Mali. Research objectives were: (1) to undertake a comparative cross-sectional study of the association of community capacity with improved maternal health in rural areas of Sanando, Mali, where capacity building interventions have taken place in some villages but not in others. (2) to describe women's maternal health status, access to and use of maternal health services given their residence in program or comparison communities.^ The participatory action research project was an integrated qualitative and quantitative study using participatory rural appraisal exercises, semi-structured group interviews and a cross-sectional survey.^ Factors related to community capacity for self-development were identified: community harmony; an understanding of the benefits of self-development; dynamic leadership; and a structure to implement collective activities.^ A distinct difference between the program and comparison villages was the commitment to train and support traditional birth attendants (TBAs). The TBAs in the program villages work in the context of the wider, integrated self-development program and, 10 years after their initial training, the TBAs continue to practice.^ Many women experience labor and childbirth alone or are attended by an untrained relative in both program and comparison villages. Nevertheless a significant change is apparent, with more women in program villages than in comparison villages being assisted by the TBAs. The delivery practices of the TBAs reveal the positive impact of their training in the "three cleans" (clean hands of the assistant, clean delivery surface and clean cord-cutting). The findings of this study indicate a significant level of unmet need for child spacing methods in all villages.^ The training and support of TBAs in the program villages yielded significant improvements in their delivery practices, and resulting outcomes for women and infants. However, potential exists for further community action. Capacities for self-development have not yet been directed toward an action plan encompassing other Safe Motherhood interventions, including access to family planning services and emergency obstetric care services. ^
Resumo:
A fundamental question in developmental biology is to understand the mechanisms that govern the development of an adult individual from a single cell. Goosecoid (Gsc) is an evolutionarily conserved homeobox gene that has been cloned in vertebrates and in Drosophila. In mice, Gsc is first expressed during gastrulation stages where it marks anterior structures of the embryo, this pattern of expression is conserved among vertebrates. Later, expression is observed during organogenesis of the head, limbs and the trunk. The conserved pattern of expression of Gsc during gastrulation and gain of function experiments in Xenopus suggested a function for Gsc in the development of anterior structures in vertebrates. Also, its expression pattern in mouse suggested a role in morphogenesis of the head, limbs and trunk. To determine the functional requirement of Gsc in mice a loss of function mutation was generated by homologous recombination in embryonic stem cells and mice mutant for Gsc were generated.^ Gsc-null mice survived to birth but died hours after delivery. Phenotypic analysis revealed craniofacial and rib cage abnormalities that correlated with the second phase of Gsc expression in the head and trunk but no anomalies were found that correlated with its pattern of expression during gastrulation or limb development.^ To determine the mode of action of Gsc during craniofacial development aggregation chimeras were generated between Gsc-null and wild-type embryos. Chimeras were generated by the aggregation of cleavage stage embryos, taking advantage of two different Gsc-null alleles generated during gene targeting. Chimeras demonstrated a cell-autonomous function for Gsc during craniofacial development and a requirement for Gsc function in cartilage and mesenchymal tissues.^ Thus, during embryogenesis in mice, Gsc is not an essential component of gastrulation as had been suggested in previous experiments. Gsc is required for craniofacial development where it acts cell autonomously in cartilage and mesenchymal tissues. Gsc is also required for proper development of the rib cage but it is dispensable for limb development in mice. ^
Resumo:
BACKGROUND P450 aromatase (CYP19A1) is essential for the biosynthesis of estrogens from androgen precursors. Mutations in the coding region of CYP19A1 lead to autosomal recessive aromatase deficiency. To date over 20 subjects have been reported with aromatase deficiency which may manifest during fetal life with maternal virilization and virilization of the external genitalia of a female fetus due to low aromatase activity in the steroid metabolizing fetal-placental unit and thus high androgen levels. During infancy, girls often have ovarian cysts and thereafter fail to enter puberty showing signs of variable degree of androgen excess. Moreover, impact on growth, skeletal maturation and other metabolic parameters is seen in both sexes. OBJECTIVE AND HYPOTHESIS We found a novel homozygous CYP19A1 mutation in a 46,XX girl who was born at term to consanguineous parents. Although the mother did not virilize during pregnancy, the baby was found to have a complex genital anomaly at birth (enlarged genital tubercle, fusion of labioscrotal folds) with elevated androgens at birth, normalizing thereafter. Presence of 46,XX karyotype and female internal genital organs (uterus, vagina) together with biochemical findings and follow-up showing regression of clitoral hypertrophy, as well as elevated FSH suggested aromatase deficiency. Interestingly, her older brother presented with mild hypospadias and bilateral cryptorchidism and was found to carry the same homozygous CYP19A1 mutation. To confirm the clinical diagnosis, genetic, functional and computational studies were performed. METHODS AND RESULTS Genetic analysis revealed a homozygous R192H mutation in the CYP19A1 gene. This novel mutation was characterized for its enzymatic activity (Km, Vmax) in a cell model and found to have markedly reduced catalytic activity when compared to wild-type aromatase; thus explaining the phenotype. Computational studies suggest that R192H disrupts the substrate access channel in CYP19A1 that may affect binding of substrates and exit of catalytic products. CONCLUSION R192H is a novel CYP19A1 mutation which causes a severe phenotype of aromatase deficiency in a 46,XX newborn and maybe hypospadias and cryptorchidism in a 46,XY, but no maternal androgen excess during pregnancy.
Resumo:
Venous malformations (VMs) are the most common vascular developmental anomalies (birth defects) . These defects are caused by developmental arrest of the venous system during various stages of embryogenesis. VMs remain a difficult diagnostic and therapeutic challenge due to the wide range of clinical presentations, unpredictable clinical course, erratic response to the treatment with high recurrence/persistence rates, high morbidity following non-specific conventional treatment, and confusing terminology. The Consensus Panel reviewed the recent scientific literature up to the year 2013 to update a previous IUP Consensus (2009) on the same subject. ISSVA Classification with special merits for the differentiation between the congenital vascular malformation (CVM) and vascular tumors was reinforced with an additional review on syndrome-based classification. A "modified" Hamburg classification was adopted to emphasize the importance of extratruncular vs. truncular sub-types of VMs. This incorporated the embryological origin, morphological differences, unique characteristics, prognosis and recurrence rates of VMs based on this embryological classification. The definition and classification of VMs were strengthened with the addition of angiographic data that determines the hemodynamic characteristics, the anatomical pattern of draining veins and hence the risk of complication following sclerotherapy. The hemolymphatic malformations, a combined condition incorporating LMs and other CVMs, were illustrated as a separate topic to differentiate from isolated VMs and to rectify the existing confusion with name-based eponyms such as Klippel-Trenaunay syndrome. Contemporary concepts on VMs were updated with new data including genetic findings linked to the etiology of CVMs and chronic cerebrospinal venous insufficiency. Besides, newly established information on coagulopathy including the role of D-Dimer was thoroughly reviewed to provide guidelines on investigations and anticoagulation therapy in the management of VMs. Congenital vascular bone syndrome resulting in angio-osteo-hyper/hypotrophy and (lateral) marginal vein was separately reviewed. Background data on arterio-venous malformations was included to differentiate this anomaly from syndrome-based VMs. For the treatment, a new section on laser therapy and also a practical guideline for follow up assessment were added to strengthen the management principle of the multidisciplinary approach. All other therapeutic modalities were thoroughly updated to accommodate a changing concept through the years.
Resumo:
During postnatal growth the parenchymal septa of rat lung undergo an impressive restructuring. While immature septa are thick and contain two capillary layers, mature septa are slender and contain a single microvascular network. Using the Mercox casting technique and scanning electron microscopy, we investigated the mode and the timing of the transformation of the pulmonary capillary bed. During the third postnatal week the parenchymal septa rapidly mature to match adult morphology. Even in adult lungs, however, remnants of the immature status are present: A capillary bilayer is regularly found at the base and the tip of the septa. Our observations support the concept that reduction of intervening tissue, partial fusion of the two capillary networks, and preferential growth lead to the mature vascular arrangement. The fact that true mature interalveolar septa show a denser capillary network than alveolar walls abutting onto pleura, bronchi, or larger vessels is consonant with the fusion theory. Towards the nonparenchyma, the capillary network surrounding every airspace had no counterpart to fuse with. From quantitative data it can be calculated that owing to lung growth, mesh size should increase more than four times between birth and adult age. The adult lung network, however, is denser than the one in young animals. This means that new meshes must be added during growth. We propose that small holes observed in sheet-like regions of the microvasculature enlarge to form new capillary meshes. With this mechanism of in-itself or intussusceptional growth, sprouting of individual capillary segments to increase network size is no longer needed.
Resumo:
We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function.
Resumo:
Background information: During the late 1970s and the early 1980s, West Germany witnessed a reversal of gender differences in educational attainment, as females began to outperform males. Purpose: The main objective was to analyse which processes were behind the reversal of gender differences in educational attainment after 1945. The theoretical reflections and empirical evidence presented for the US context by DiPrete and Buchmann (Gender-specific trends in the value of education and the emerging gender gap in college completion, Demography 43: 1–24, 2006) and Buchmann, DiPrete, and McDaniel (Gender inequalities in education, Annual Review of Sociology 34: 319–37, 2008) are considered and applied to the West German context. It is suggested that the reversal of gender differences is a consequence of the change in female educational decisions, which are mainly related to labour market opportunities and not, as sometimes assumed, a consequence of a ‘boy’s crisis’. Sample: Several databases, such as the German General Social Survey, the German Socio-economic Panel and the German Life History Study, are employed for the longitudinal analysis of the educational and occupational careers of birth cohorts born in the twentieth century. Design and methods: Changing patterns of eligibility for university studies are analysed for successive birth cohorts and gender. Binary logistic regressions are employed for the statistical modelling of the individuals’ achievement, educational decision and likelihood for social mobility – reporting average marginal effects (AME). Results: The empirical results suggest that women’s better school achievement being constant across cohorts does not contribute to the explanation of the reversal of gender differences in higher education attainment, but the increase of benefits for higher education explains the changing educational decisions of women regarding their transition to higher education. Conclusions: The outperformance of females compared with males in higher education might have been initialised by several social changes, including the expansion of public employment, the growing demand for highly qualified female workers in welfare and service areas, the increasing returns of women’s increased education and training, and the improved opportunities for combining family and work outside the home. The historical data show that, in terms of (married) women’s increased labour market opportunities and female life-cycle labour force participation, the raising rates of women’s enrolment in higher education were – among other reasons – partly explained by their rising access to service class positions across birth cohorts, and the rise of their educational returns in terms of wages and long-term employment.
Resumo:
Throughout the last decade, increasing awareness has been raised on issues related to reproduction in rheumatic diseases including basic research to clarify the important role of estrogens in the etiology and pathophysiology of immune/inflammatory diseases. Sub- or infertility is a heterogeneous condition that can be related to immunological mechanisms, to pregnancy loss, to disease burden, to therapy, and to choices in regard to family size. Progress in reproductive medicine has made it possible for more patients with rheumatic disease to have children. Active disease in women with rheumatoid arthritis (RA) affects their children's birth weight and may have long-term effects on their future health status. Pregnancy complications as preeclampsia and intrauterine growth restriction are still increased in patients with systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS), however, biomarkers can monitor adverse events, and several new therapies may improve outcomes. Pregnancies in women with APS remain a challenge, and better therapies for the obstetric APS are needed. New prospective studies indicate improved outcomes for pregnancies in women with rare diseases like systemic sclerosis and vasculitis. TNF inhibitors hold promise for maintaining remission in rheumatological patients and may be continued at least in the first half of pregnancy. Pre-conceptional counseling and interdisciplinary management of pregnancies are essential for ensuring optimal pregnancy outcomes.
Resumo:
FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1.
Resumo:
BACKGROUND & AIMS Subtle inter-patient genetic variation and environmental factors combine to determine disease progression in non-alcoholic fatty liver disease (NAFLD). Carriage of the PNPLA3 rs738409 c.444C >G minor allele (encoding the I148M variant) has been robustly associated with advanced NAFLD. Although most hepatocellular carcinoma (HCC) is related to chronic viral hepatitis or alcoholic liver disease, the incidence of NAFLD-related HCC is increasing. We examined whether rs738409 C >G was associated with HCC-risk in patients with NAFLD. METHODS PNPLA3 rs738409 genotype was determined by allelic discrimination in 100 European Caucasians with NAFLD-related HCC and 275 controls with histologically characterised NAFLD. RESULTS Genotype frequencies were significantly different between NAFLD-HCC cases (CC=28, CG=43, GG=29) and NAFLD-controls (CC=125, CG=117, GG=33) (p=0.0001). In multivariate analysis adjusted for age, gender, diabetes, BMI, and presence of cirrhosis, carriage of each copy of the rs738409 minor (G) allele conferred an additive risk for HCC (adjusted OR 2.26 [95% CI 1.23-4.14], p=0.0082), with GG homozygotes exhibiting a 5-fold [1.47-17.29], p=0.01 increased risk over CC. When compared to the UK general population (1958 British Birth Cohort, n=1476), the risk-effect was more pronounced (GC vs. CC: unadjusted OR 2.52 [1.55-4.10], p=0.0002; GG vs. CC: OR 12.19 [6.89-21.58], p<0.0001). CONCLUSIONS Carriage of the PNPLA3 rs738409 C >G polymorphism is not only associated with greater risk of progressive steatohepatitis and fibrosis but also of HCC. If validated, these findings suggest that PNPLA3 genotyping has the potential to contribute to multi-factorial patient-risk stratification, identifying those to whom HCC surveillance may be targeted.
Resumo:
Whereas the genetic background of horn growth in cattle has been studied extensively, little is known about the morphological changes in the developing fetal horn bud. In this study we histologically analyzed the development of horn buds of bovine fetuses between ~70 and ~268 days of pregnancy and compared them with biopsies taken from the frontal skin of the same fetuses. In addition we compared the samples from the wild type (horned) fetuses with samples taken from the horn bud region of age-matched genetically hornless (polled) fetuses. In summary, the horn bud with multiple layers of vacuolated keratinocytes is histologically visible early in fetal life already at around day 70 of gestation and can be easily differentiated from the much thinner epidermis of the frontal skin. However, at the gestation day (gd) 212 the epidermis above the horn bud shows a similar morphology to the epidermis of the frontal skin and the outstanding layers of vacuolated keratinocytes have disappeared. Immature hair follicles are seen in the frontal skin at gd 115 whereas hair follicles below the horn bud are not present until gd 155. Interestingly, thick nerve bundles appear in the dermis below the horn bud at gd 115. These nerve fibers grow in size over time and are prominent shortly before birth. Prominent nerve bundles are not present in the frontal skin of wild type or in polled fetuses at any time, indicating that the horn bud is a very sensitive area. The samples from the horn bud region from polled fetuses are histologically equivalent to samples taken from the frontal skin in horned species. This is the first study that presents unique histological data on bovine prenatal horn bud differentiation at different developmental stages which creates knowledge for a better understanding of recent molecular findings.