907 resultados para Biotinylated peptide
Resumo:
Introduction: B-type natriuretic peptide (BNP) is a biomarker of myocardial stress. In children, the value of preoperative BNP on postoperative outcome is unclear. The aim of this study was to determine the predictive value of preoperative NT-proBNP on postoperative outcome in children after congenital heart surgery. Results: Ninety-seven patients were included in the study with a median age of 3.3 years [0.7-5.2]. Preoperative median NT-proBNP was 412 pg/ml [164-1309]. NT-proBNP was above the P95 reference value for age in 56 patients (58%). Preoperative NT-proBNP was significantly higher in patients who had mechanical ventilation duration of more than 2 days (1156 pg/ml [281-1951] vs. 267 pg/ml [136-790], p=0.003) and who stayed more than 6 days in the pediatric intensive care unit (727 pg/ml [203-1951] vs. 256 pg/ml [136-790], p=0.007). However, preoperative NT-proBNP was not significantly higher in patients with an increased inotropic score, a prolonged cardiopulmonary bypass time or an increased surgical risk category. Conclusions: An elevated preoperative NT-proBNP reflects hemodynamic status and cardiac dysfunction, and therefore is a valuable adjunct in predicting a complicated postoperative course. ___________________________________ Introduction: Le peptide natriurétique type B (BNP) est un marqueur reflétant le stress myocardique. Dans la population pédiatrique, la signification des valeurs préopératoire de BNP, en particulier sur l'évolution postopératoire, n'est pas clairement établie. Le but de l'étude est de déterminer la valeur prédictive de la partie NT sérique du BNP (NT-proBNP) sur l'évolution post opératoire d'enfants porteur d'une cardiopathie congénitale et ayant eu une chirurgie cardiaque. Résultats: Nonante-sept enfants ont été inclus dans l'étude, avec un âge médian de 3.3 ans [0.7-5.2]. La valeur médiane du NT-proBNP préopératoire était de 412 pg/ml [164-1309]. Le NT-proBNP préopératoire était supérieur au P95 des valeurs de référence pour l'âge chez 56 patients (58%). Le NT-proBNP préopératoire était significativement plus élevé chez les patients ayant eu plus de deux jours de ventilation mécanique dans la période postopératoire (1156 pg/ml [281-1951] vs. 267 pg/ml [136-790], p=0.003) et ayant été hospitalisés plus de 6 jours dans l'unité de soins intensifs pédiatrique (727 pg/ml [203-1951] vs. 256 pg/ml [136-790], p=0.007). Par contre, le NT-proBNP préopératoire n'était pas significativement plus élevé chez les patients ayant eu un score d'inotrope élevé pendant leur hospitalisation aux soins intensifs, un temps de circulation extracorporelle prolongé ou ayant subi une chirurgie avec un risque chirurgical élevé. Conclusions: Un NT-proBNP sérique élevé en préopératoire reflète l'importance du stress myocardique induit par l'hémodynamique et la dysfonction myocardique, il est un marqueur qui permet d'améliorer l'identification des patients à risque d'avoir une évolution post opératoire compliquée.
Resumo:
The Thai trial (RV144) indicates that a prime-boost vaccine combination that induces both T-cell and antibody responses may be desirable for an effective HIV vaccine. We have previously shown that immunization with synthetic long peptides (SLP), covering the conserved parts of SIV, induced strong CD4 T-cell and antibody responses, but only modest CD8 T-cell responses. To generate a more balanced CD4/CD8 T-cell and antibody response, this study evaluated a pox-vector prime/SLP boost strategy in rhesus macaques. Priming with a replication-competent NYVAC, encoding HIV-1 clade C gag, pol and nef, induced modest IFNγ T-cell immune responses, predominantly directed against HIV-1 Gag. Booster immunization with SLP, covering the conserved parts of HIV-1 Gag, Pol and Env, resulted in a more than 10-fold increase in IFNγ ELISpot responses in four of six animals, which were predominantly HIV-1 Pol-specific. The animals showed a balanced polyfunctional CD4 and CD8 T-cell response and high Ab titres.
Resumo:
Abs bind to unprocessed Ags, whereas cytotoxic CD8(+) T cells recognize peptides derived from endogenously processed Ags presented in the context of class I MHC complexes. We screened, by ELISA, human sera for Abs reacting specifically with the influenza matrix protein (IMP)-derived peptide58-66 displayed by HLA-A*0201 complexes. Among 653 healthy volunteers, blood donors, and women on delivery, high-titered HLA-A*0201/IMP58-66 complex-specific IgG Abs were detected in 11 females with a history of pregnancies and in 1 male, all HLA-A*0201(-). These Abs had the same specificity as HLA-A*0201/IMP58-66-specific cytotoxic T cells and bound neither to HLA-A*0201 nor the peptide alone. No such Abs were detected in HLA-A*0201(+) volunteers. These Abs were not cross-reactive to other self-MHC class I alleles displaying IMP58-66, but bound to MHC class I complexes of an HLA nonidentical offspring. HLA-A*0201/IMP58-66 Abs were also detected in the cord blood of newborns, indicating that HLA-A*0201/IMP58-66 Abs are produced in HLA-A*0201(-) mothers and enter the fetal blood system. That Abs can bind to peptides derived from endogenous Ags presented by MHC complexes opens new perspectives on interactions between the cellular and humoral immune system.
Resumo:
Background: We use an approach based on Factor Analysis to analyze datasets generated for transcriptional profiling. The method groups samples into biologically relevant categories, and enables the identification of genes and pathways most significantly associated to each phenotypic group, while allowing for the participation of a given gene in more than one cluster. Genes assigned to each cluster are used for the detection of pathways predominantly activated in that cluster by finding statistically significant associated GO terms. We tested the approach with a published dataset of microarray experiments in yeast. Upon validation with the yeast dataset, we applied the technique to a prostate cancer dataset. Results: Two major pathways are shown to be activated in organ-confined, non-metastatic prostate cancer: those regulated by the androgen receptor and by receptor tyrosine kinases. A number of gene markers (HER3, IQGAP2 and POR1) highlighted by the software and related to the later pathway have been validated experimentally a posteriori on independent samples. Conclusion: Using a new microarray analysis tool followed by a posteriori experimental validation of the results, we have confirmed several putative markers of malignancy associated with peptide growth factor signalling in prostate cancer and revealed others, most notably ERRB3 (HER3). Our study suggest that, in primary prostate cancer, HER3, together or not with HER4, rather than in receptor complexes involving HER2, could play an important role in the biology of these tumors. These results provide new evidence for the role of receptor tyrosine kinases in the establishment and progression of prostate cancer.
Resumo:
p-Nitrobenzyloxycarbonyl was used as temporary protecting group for the -amino function in solid-phase peptide synthesis. The corresponding derivatives are solids, easy to be synthesized, and perform well in the solid-phase mode. pNZ is removed in practical neutral conditions in the presence of catalytic amounts of acid. They are orthogonal with the most common protecting groups used in peptide chemistry. They are specially useful in combination with Fmoc chemistry to overcome those side reactions associated with the used of the piperidine such DKP and aspartiimide formation. The flexibility of pNZ can be very useful for the preparation of libraries of small organic molecules.
Resumo:
Nanoparticulate formulations for synthetic long peptide (SLP)-cancer vaccines as alternative to clinically used Montanide ISA 51- and squalene-based emulsions are investigated in this study. SLPs were loaded into TLR ligand-adjuvanted cationic liposomes and PLGA nanoparticles (NPs) to potentially induce cell-mediated immune responses. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by dendritic cells (DCs) and subsequent activation of T cells in vitro. Subcutaneous vaccination of mice with the different formulations showed that the SLP-loaded cationic liposomes were the most efficient for the induction of functional antigen-T cells in vivo, followed by PLGA NPs which were as potent as or even more than the Montanide and squalene emulsions. Moreover, after transfer of antigen-specific target cells in immunized mice, liposomes induced the highest in vivo killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate, biodegradable delivery systems promising candidates as delivery platforms for SLP-based immunotherapy of cancer.
Resumo:
Monomers allowing for the introduction of [2,5-dimethylfuran]-protected maleimides into polyamides such as peptides, peptide nucleic acids, and peptoids were prepared, as well as the corresponding oligomers. Suitable maleimide deprotection conditions were established in each case. The stability of the adducts generated by Michael-type maleimide-thiol reaction and Diels-Alder cycloaddition to maleimide deprotection conditions was exploited to prepare a variety of conjugates from peptide and PNA scaffolds incorporating one free and one protected maleimide. The target molecules were synthesized by using two subsequent maleimide-involving click reactions separated by a maleimide deprotection step. Carrying out maleimide deprotection and conjugation simultaneously gave better results than performing the two reactions subsequently.
Resumo:
RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation.
Resumo:
The discovery that stem cells isolated from different organs have the ability to differentiate into mature beating cardiomyocytes has fostered considerable interest in developing cellular regenerative therapies to treat cardiac diseases associated with the loss of viable myocardium. Clinical studies evaluating the potential of stem cells (from heart, blood, bone marrow, skeletal muscle, and fat) to regenerate the myocardium and improve its functional status indicated that although the method appeared generally safe, its overall efficacy has remained modest. Several issues raised by these studies were notably related to the nature and number of injected cells, as well as the route and timing of their administration, to cite only a few. Besides the direct administration of cardiac precursor cells, a distinct approach to cardiac regeneration could be based upon the stimulation of the heart's natural ability to regenerate, using pharmacological approaches. Indeed, differentiation and/or proliferation of cardiac precursor cells is controlled by various endogenous mediators, such as growth factors and cytokines, which could thus be used as pharmacological agents to promote regeneration. To illustrate such approach, we present recent results showing that the exogenous administration of the natriuretic peptide BNP triggers "endogenous" cardiac regeneration, following experimental myocardial infarction.
Resumo:
Kahalalide compounds are peptides that are isolated from a Hawaiian herbivorous marine species of mollusc, Elysia rufescens, and its diet, the green alga Bryopsis sp. Kahalalide F and its synthetic analogues are the most promising compounds of the Kahalalide family because they show anti-tumoral activity. Linear solid-phase syntheses of Kahalalide F have been reported. Here we describe several new improved synthetic routes based on convergent approaches with distinct orthogonal protection schemes for the preparation of Kahaladide analogues. These strategies allow a better control and characterization of the intermediates because more reactions are performed in solution. Five derivatives of Kahalalide F were synthesized using several convergent approaches.
Resumo:
Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis
Resumo:
Production of antimicrobial peptides in plants constitutes an approach for obtaining them in high amounts. However, their heterologous expression in a practical and efficient manner demands some structural requirements such as a minimum size, the incorporation of retention signals to assure their accumulation in specific tissues, and the presence of protease cleavage amino acids and of target sequences to facilitate peptide detection. Since any sequence modification may influence the biological activity, peptides that will be obtained from the expression must be screened prior to the synthesis of the genes for plant transformation. We report herein a strategy for the modification of the antimicrobial undecapeptide BP100 that allowed the identification of analogues that can be expressed in plants and exhibit optimum biological properties. We prepared 40 analogues obtained by incorporating repeated units of the antimicrobial undecapeptide, fragments of natural peptides, one or two AGPA hinges, a Gly or Ser residue at the N-terminus, and a KDEL fragment and/or the epitope tag54 at the C-terminus. Their antimicrobial, hemolytic and phytotoxic activities, and protease susceptibility were evaluated. Best sequences contained a magainin fragment linked to the antimicrobial undecapeptide through an AGPA hinge. Moreover, since the presence of a KDEL unit or of tag54 did not influence significantly the biological activity, these moieties can be introduced when designing compounds to be retained in the endoplasmic reticulum and detected using a complementary epitope. These findings may contribute to the design of peptides to be expressed in plants
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.