949 resultados para Biogeochemistry of Tidal Flats
Resumo:
In-situ geotechnical measurements of surface sediments were carried out along large subaqueous dunes in the Knudedyb tidal inlet channel in the Danish Wadden Sea using a small free-falling penetrometer. Vertical profiles showed a typical stratification pattern with a resolution of ~1 cm depicting a thin surface layer of low sediment strength and a stiffer substratum below (quasi-static bearing capacity equivalent: 1-3 kPa in the top layer, 20-140 kPa in the underlying sediment; thickness of the top layer ca. 5-8 cm). Observed variations in the thickness and strength of the surface layer during a tidal cycle were compared to mean current velocities (measured using an acoustic Doppler current profiler, ADCP), high-resolution bathymetry (based on multibeam echo sounding, MBES) and qualitative estimates of suspended sediment distributions in the water column (estimated from ADCP backscatter intensity). The results revealed an ebb dominance in sediment remobilization, and a general accretion of the bed towards low water. A loose top layer occurred throughout the tidal cycle, likely influenced by bedload transport and small events of suspended sediment resettlement (thickness: 6 +-2 cm). Furthermore, this layer showed a significant increase in thickness (e.g. from 8 cm to 16 cm) related to periods of overall deposition. These findings imply that dynamic penetrometers can conveniently serve to (1) quantify potentially mobile sediments by determining the thickness of a loose sediment surface layer, (2) unravel sediment strength development in potentially mobile sediments and (3) identify sediment accumulation. Such data are an important complement and add a new geotechnical perspective during investigations of sediment remobilization processes in highly dynamic coastal environments.
Resumo:
The contributions of total organic carbon and nitrogen to elemental cycling in the surface layer of the Sargasso Sea are evaluated using a 5-yr time-series data set (1994-1998). Surface-layer total organic carbon (TOC) and total organic nitrogen (TON) concentrations ranged from 60 to 70 µM C and 4 to 5.5 µM N seasonally, resulting in a mean C : N molar ratio of 14.4±2.2. The highest surface concentrations varied little during individual summer periods, indicating that net TOC production ceased during the highly oligotrophic summer season. Winter overturn and mixing of the water column were both the cause of concentration reductions and the trigger for net TOC production each year following nutrient entrainment and subsequent new production. The net production of TOC varied with the maximum in the winter mixed-layer depth (MLD), with greater mixing supporting the greatest net production of TOC. In winter 1995, the TOC stock increased by 1.4 mol C/m**2 in response to maximum mixing depths of 260 m. In subsequent years experiencing shallower maxima in MLD (<220 m), TOC stocks increased <0.7 mol C/m**2. Overturn of the water column served to export TOC to depth (>100 m), with the amount exported dependent on the depth of mixing (total export ranged from 0.4 to 1.4 mol C/m**2/yr). The exported TOC was comprised both of material resident in the surface layer during late summer (resident TOC) and material newly produced during the spring bloom period (fresh TOC). Export of resident TOC ranged from 0.5 to 0.8 mol C/m**2/yr, covarying with the maximum winter MLD. Export of fresh TOC varied from nil to 0.8 mol C/m**2/yr. Fresh TOC was exported only after a threshold maximum winter MLD of ~200 m was reached. In years with shallower mixing, fresh TOC export and net TOC production in the surface layer were greatly reduced. The decay rates of the exported TOC also covaried with maximum MLD. The year with deepest mixing resulted in the highest export and the highest decay rate (0.003 1/d) while shallow and low export resulted in low decay rates (0.0002 1/d), likely a consequence of the quality of material exported. The exported TOC supported oxygen utilization at dC : dO2 molar ratios ranging from 0.17 when TOC export was low to 0.47 when it was high. We estimate that exported TOC drove 15-41% of the annual oxygen utilization rates in the 100-400 m depth range. Finally, there was a lack of variability in the surface-layer TON signal during summer. The lack of a summer signal for net TON production suggests a small role for N2 fixation at the site. We hypothesize that if N2 fixation is responsible for elevated N : P ratios in the main thermocline of the Sargasso Sea, then the process must take place south of Bermuda and the signal transported north with the Gulf Stream system.
Resumo:
Four retrogressive thaw slumps (RTS) located on Herschel Island and the Yukon coast (King Point) in the western Canadian Arctic were investigated to compare the environmental, sedimentological and geochemical setting and characteristics of zones in active and stabilised slumps and at undisturbed sites. In general, the slope, sedimentology and biogeochemistry of stabilised and undisturbed zones differ, independent of their age or location. Organic carbon contents were lower in slumps than in the surrounding tundra, and the density and compaction of slump sediments were much greater. Radiocarbon dating showed that RTS were likely to have been active around 300 a BP and are undergoing a similar period of increased activity now. This cycle is thought to be controlled more by local geometry, cryostratigraphy and the rate of coastal erosion than by variation in summer temperatures.