981 resultados para Bio-inspired techniques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-processing a finite element solution is a well-known technique, which consists in a recalculation of the originally obtained quantities such that the rate of convergence increases without the need for expensive remeshing techniques. Postprocessing is especially effective in problems where better accuracy is required for derivatives of nodal variables in regions where Dirichlet essential boundary condition is imposed strongly. Consequently such an approach can be exceptionally good in modelling of resin infiltration under quasi steady-state assumption by remeshing techniques and with explicit time integration, because only the free-front normal velocities are necessary to advance the resin front to the next position. The new contribution is the post-processing analysis and implementation of the freeboundary velocities of mesolevel infiltration analysis. Such implementation ensures better accuracy on even coarser meshes, which in consequence reduces the computational time also by the possibility of employing larger time steps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetostratigraphy of two sections in early Miocene marine deposits of the Tagus Basin is studied. Thermal demagnetization was used to isolate the primary component of magnetization for 45 samples from the Foz da Fonte section, and for 74 others from Trafaria section. The succession of the polarity zones found in these sections is tentatively correlated with the geomagnetic polarity time scale (GPTS) on the basis of the biostratigraphic data yielded by planktic Foraminifera. The planktic zones and magnetic polarities recognized in these sections can be adequately correlated with the part of the GPTS [table calibrated by BERGGRENET al. (1985)] corresponding to the Anomalies 6 and 5E (Foz da Fonte) and 5D (Trafaria). This correlations suggests ages between 19,35 and 18,14 Ma for Foz da Fonte section, and 17,90 to 16,98 Ma for Trafaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, perfil de Engenharia Ecológica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydatid disease in tropical areas poses a serious diagnostic problem due to the high frequence of cross-reactivity with other endemic helminthic infections. The enzyme-linked-immunosorbent assay (ELISA) and the double diffusion arc 5 showed respectively a sensitivity of 73% and 57% and a specificity of 84-95% and 100%. However, the specificity of ELISA was greatly increased by using ovine serum and phosphorylcholine in the diluent buffer. The hydatic antigen obtained from ovine cyst fluid showed three main protein bands of 64,58 and 30 KDa using SDS PAGE and immunoblotting. Sera from patients with onchocerciasis, cysticercosis, toxocariasis and Strongyloides infection cross-reacted with the 64 and 58 KDa bands by immunoblotting. However, none of the analyzed sera recognized the 30 KDa band, that seems to be specific in this assay. The immunoblotting showed a sensitivity of 80% and a specificity of 100% when used to recognize the 30 KDa band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the degree of Doctor of Philosophy in Electrical Engineering, speciality on Perceptional Systems, by the Universidade Nova de Lisboa, Faculty of Sciences and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A otimização nos sistemas de suporte à decisão atuais assume um carácter fortemente interdisciplinar relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos, sendo que a computação de soluções ótimas em muitos destes problemas é intratável. Os métodos de pesquisa heurística são conhecidos por permitir obter bons resultados num intervalo temporal aceitável. Muitas vezes, necessitam que a parametrização seja ajustada de forma a permitir obter bons resultados. Neste sentido, as estratégias de aprendizagem podem incrementar o desempenho de um sistema, dotando-o com a capacidade de aprendizagem, por exemplo, qual a técnica de otimização mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização mais adequada de um dado algoritmo num determinado cenário. Alguns dos métodos de otimização mais usados para a resolução de problemas do mundo real resultaram da adaptação de ideias de várias áreas de investigação, principalmente com inspiração na natureza - Meta-heurísticas. O processo de seleção de uma Meta-heurística para a resolução de um dado problema é em si um problema de otimização. As Híper-heurísticas surgem neste contexto como metodologias eficientes para selecionar ou gerar heurísticas (ou Meta-heurísticas) na resolução de problemas de otimização NP-difícil. Nesta dissertação pretende-se dar uma contribuição para o problema de seleção de Metaheurísticas respetiva parametrização. Neste sentido é descrita a especificação de uma Híperheurística para a seleção de técnicas baseadas na natureza, na resolução do problema de escalonamento de tarefas em sistemas de fabrico, com base em experiência anterior. O módulo de Híper-heurística desenvolvido utiliza um algoritmo de aprendizagem por reforço (QLearning), que permite dotar o sistema da capacidade de seleção automática da Metaheurística a usar no processo de otimização, assim como a respetiva parametrização. Finalmente, procede-se à realização de testes computacionais para avaliar a influência da Híper- Heurística no desempenho do sistema de escalonamento AutoDynAgents. Como conclusão genérica, é possível afirmar que, dos resultados obtidos é possível concluir existir vantagem significativa no desempenho do sistema quando introduzida a Híper-heurística baseada em QLearning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thesis submitted to the University of Innsbruck for the doctor degree in Natural Sciences, Physics and New University of Lisbon for the doctor degree in Physics, Atomic and Molecular Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do grau de doutor em Bioquímica pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Informática, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable Construction, Materials and Practice, p. 426-432

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to determine the prevalence of certain mycoplasma species, i.e., Mycoplasma hominis, Ureaplasma urealyticum and Mycoplasma penetrans, in urethral swabs from HIV-1 infected patients compared to swabs from a control group. Mycoplasmas were detected by routine culture techniques and by the Polymerase Chain Reaction (PCR) technique, using 16SrRNA generic primers of conserved region and Mycoplasma penetrans specific primers. The positivity rates obtained with the two methods were comparable. Nevertheless, PCR was more sensitive, while the culture techniques allowed the quantification of the isolates. The results showed no significant difference (p < 0.05) in positivity rates between the methods used for mycoplasma detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paleoparasitology is the study of parasites found in archaeological material. The development of this field of research began with histological identification of helminth eggs in mummy tissues, analysis of coprolites, and recently through molecular biology. An approach to the history of paleoparasitology is reviewed in this paper, with special reference to the studies of ancient DNA identified in archaeological material.