938 resultados para Binary programming
Resumo:
This paper presents a new method for the inclusion of nonlinear demand and supply relationships within a linear programming model. An existing method for this purpose is described first and its shortcomings are pointed out before showing how the new approach overcomes those difficulties and how it provides a more accurate and 'smooth' (rather than a kinked) approximation of the nonlinear functions as well as dealing with equilibrium under perfect competition instead of handling just the monopolistic situation. The workings of the proposed method are illustrated by extending a previously available sectoral model for the UK agriculture.
Resumo:
Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multicriteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, rye-grass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.
Resumo:
A limitation of small-scale dairy systems in central Mexico is that traditional feeding strategies are less effective when nutrient availability varies through the year. In the present work, a linear programming (LP) model that maximizes income over feed cost was developed, and used to evaluate two strategies: the traditional one used by the small-scale dairy producers in Michoacan State, based on fresh lucerne, maize grain and maize straw; and an alternative strategy proposed by the LIP model, based on ryegrass hay, maize silage and maize grain. Biological and economic efficiency for both strategies were evaluated. Results obtained with the traditional strategy agree with previously published work. The alternative strategy did not improve upon the performance of the traditional strategy because of low metabolizable protein content of the maize silage considered by the model. However, the Study recommends improvement of forage quality to increase the efficiency of small-scale dairy systems, rather than looking for concentrate supplementation.
Resumo:
Small-scale dairy systems play an important role in the Mexican dairy sector and farm planning activities related to resource allocation have a significant impact on the profitability of such enterprises. Linear programming is a technique widely used for planning and ration formulation, and partial budgeting is a technique for assessing the impact of changes on the profitability of an enterprise. This study used both methods to optimise land use for forage production and nutrient availability, and to evaluate the economic impact of such changes in small-scale Mexican dairy systems. The model showed satisfactory performance when optimal solutions were compared with the traditional strategy. The strategy using fresh ryegrass, maize silage and oat hay, and the strategy using a combination of alfalfa hay, maize silage, fresh ryegrass and oat hay appeared attractive options for providing a better nutrient supply and maintaining a higher stocking rate throughout the year than the traditional strategy.
Resumo:
Recently, various approaches have been suggested for dose escalation studies based on observations of both undesirable events and evidence of therapeutic benefit. This article concerns a Bayesian approach to dose escalation that requires the user to make numerous design decisions relating to the number of doses to make available, the choice of the prior distribution, the imposition of safety constraints and stopping rules, and the criteria by which the design is to be optimized. Results are presented of a substantial simulation study conducted to investigate the influence of some of these factors on the safety and the accuracy of the procedure with a view toward providing general guidance for investigators conducting such studies. The Bayesian procedures evaluated use logistic regression to model the two responses, which are both assumed to be binary. The simulation study is based on features of a recently completed study of a compound with potential benefit to patients suffering from inflammatory diseases of the lung.
The sequential analysis of repeated binary responses: a score test for the case of three time points
Resumo:
In this paper a robust method is developed for the analysis of data consisting of repeated binary observations taken at up to three fixed time points on each subject. The primary objective is to compare outcomes at the last time point, using earlier observations to predict this for subjects with incomplete records. A score test is derived. The method is developed for application to sequential clinical trials, as at interim analyses there will be many incomplete records occurring in non-informative patterns. Motivation for the methodology comes from experience with clinical trials in stroke and head injury, and data from one such trial is used to illustrate the approach. Extensions to more than three time points and to allow for stratification are discussed. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
A score test is developed for binary clinical trial data, which incorporates patient non-compliance while respecting randomization. It is assumed in this paper that compliance is all-or-nothing, in the sense that a patient either accepts all of the treatment assigned as specified in the protocol, or none of it. Direct analytic comparisons of the adjusted test statistic for both the score test and the likelihood ratio test are made with the corresponding test statistics that adhere to the intention-to-treat principle. It is shown that no gain in power is possible over the intention-to-treat analysis, by adjusting for patient non-compliance. Sample size formulae are derived and simulation studies are used to demonstrate that the sample size approximation holds. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
This paper considers methods for testing for superiority or non-inferiority in active-control trials with binary data, when the relative treatment effect is expressed as an odds ratio. Three asymptotic tests for the log-odds ratio based on the unconditional binary likelihood are presented, namely the likelihood ratio, Wald and score tests. All three tests can be implemented straightforwardly in standard statistical software packages, as can the corresponding confidence intervals. Simulations indicate that the three alternatives are similar in terms of the Type I error, with values close to the nominal level. However, when the non-inferiority margin becomes large, the score test slightly exceeds the nominal level. In general, the highest power is obtained from the score test, although all three tests are similar and the observed differences in power are not of practical importance. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Prenatal testosterone excess leads to neuroendocrine, ovarian, and metabolic disruptions, culminating in reproductive phenotypes mimicking that of women with polycystic ovary syndrome (PCOS). The objective of this study was to determine the consequences of prenatal testosterone treatment on periovulatory hormonal dynamics and ovulatory outcomes. To generate prenatal testosterone-treated females, pregnant sheep were injected intramuscularly (days 30-90 of gestation, term = 147 days) with 100 mg of testosterone-propionate in cottonseed oil semi-weekly. Female offspring born to untreated control females and prenatal testosterone-treated females were then studied during their first two breeding seasons. Sheep were given two injections of prostaglandin F-2alpha 11 days apart, and blood samples were collected at 2-h intervals for 120 h, 10-min intervals for 8 h during the luteal phase (first breeding season only), and daily for an additional 15 days to characterize changes in reproductive hormonal dynamics. During the first breeding season, prenatal testosterone-treated females manifested disruptions in the timing and magnitude of primary gonadotropin surges, luteal defects, and reduced responsiveness to progesterone negative feedback. Disruptions in the periovulatory sequence of events during the second breeding season included: 1) delayed but increased preovulatory estradiol rise, 2) delayed and severely reduced primary gonadotropin surge in prenatal testosterone-treated females having an LH surge, 3) tendency for an amplified secondary FSH surge and a shift in the relative balance of FSH regulatory proteins, and 4) luteal responses that ranged from normal to anovulatory. These outcomes are likely to be of relevance to developmental origin of infertility disorders and suggest that differences in fetal exposure or fetal susceptibility to testosterone may account for the variability in reproductive phenotypes.
Resumo:
The aim of phase II single-arm clinical trials of a new drug is to determine whether it has sufficient promising activity to warrant its further development. For the last several years Bayesian statistical methods have been proposed and used. Bayesian approaches are ideal for earlier phase trials as they take into account information that accrues during a trial. Predictive probabilities are then updated and so become more accurate as the trial progresses. Suitable priors can act as pseudo samples, which make small sample clinical trials more informative. Thus patients have better chances to receive better treatments. The goal of this paper is to provide a tutorial for statisticians who use Bayesian methods for the first time or investigators who have some statistical background. In addition, real data from three clinical trials are presented as examples to illustrate how to conduct a Bayesian approach for phase II single-arm clinical trials with binary outcomes.
Resumo:
In this paper, Bayesian decision procedures are developed for dose-escalation studies based on binary measures of undesirable events and continuous measures of therapeutic benefit. The methods generalize earlier approaches where undesirable events and therapeutic benefit are both binary. A logistic regression model is used to model the binary responses, while a linear regression model is used to model the continuous responses. Prior distributions for the unknown model parameters are suggested. A gain function is discussed and an optional safety constraint is included. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Objectives: To assess the potential source of variation that surgeon may add to patient outcome in a clinical trial of surgical procedures. Methods: Two large (n = 1380) parallel multicentre randomized surgical trials were undertaken to compare laparoscopically assisted hysterectomy with conventional methods of abdominal and vaginal hysterectomy; involving 43 surgeons. The primary end point of the trial was the occurrence of at least one major complication. Patients were nested within surgeons giving the data set a hierarchical structure. A total of 10% of patients had at least one major complication, that is, a sparse binary outcome variable. A linear mixed logistic regression model (with logit link function) was used to model the probability of a major complication, with surgeon fitted as a random effect. Models were fitted using the method of maximum likelihood in SAS((R)). Results: There were many convergence problems. These were resolved using a variety of approaches including; treating all effects as fixed for the initial model building; modelling the variance of a parameter on a logarithmic scale and centring of continuous covariates. The initial model building process indicated no significant 'type of operation' across surgeon interaction effect in either trial, the 'type of operation' term was highly significant in the abdominal trial, and the 'surgeon' term was not significant in either trial. Conclusions: The analysis did not find a surgeon effect but it is difficult to conclude that there was not a difference between surgeons. The statistical test may have lacked sufficient power, the variance estimates were small with large standard errors, indicating that the precision of the variance estimates may be questionable.
Resumo:
The majority of research on magnetic nanoparticles has focused on optical, electrical, and magnetic storage areas. Recently, the application of magnetic nanoparticles as magnetically separable nanovehicles for chemical or biological species has become an area of intensive research but with rather different challenging criteria that are yet to be addressed. For example, the enhancement of intrinsically weak magnetic properties, avoidance of magnetic interactions among particles, and improvement of the stability of the nanoparticles remain key issues. Here, it is demonstrated using sequential nanochemistry preparation techniques that exchange-coupled nanomagnets, such as FePt-Fe3Pt or FePt-Fe3O4 with dramatically enhanced magnetization, can be placed inside a silica nanosphere. The advantages of enhanced magnetization and the provision of protective coating and anchored sites on the silica shell surface render these new coated particles suitable for use in magnetic separation.