879 resultados para Binary Matrix
Resumo:
We have studied domain growth during spinodal decomposition at low temperatures. We have performed a numerical integration of the deterministic time-dependent Ginzburg-Landau equation with a variable, concentration-dependent diffusion coefficient. The form of the pair-correlation function and the structure function are independent of temperature but the dynamics is slower at low temperature. A crossover between interfacial diffusion and bulk diffusion mechanisms is observed in the behavior of the characteristic domain size. This effect is explained theoretically in terms of an equation of motion for the interface.
Resumo:
We show how to decompose any density matrix of the simplest binary composite systems, whether separable or not, in terms of only product vectors. We determine for all cases the minimal number of product vectors needed for such a decomposition. Separable states correspond to mixing from one to four pure product states. Inseparable states can be described as pseudomixtures of four or five pure product states, and can be made separable by mixing them with one or two pure product states.
Resumo:
Domain growth in a system with nonconserved order parameter is studied. We simulate the usual Ising model for binary alloys with concentration 0.5 on a two-dimensional square lattice by Monte Carlo techniques. Measurements of the energy, jump-acceptance ratio, and order parameters are performed. Dynamics based on the diffusion of a single vacancy in the system gives a growth law faster than the usual Allen-Cahn law. Allowing vacancy jumps to next-nearest-neighbor sites is essential to prevent vacancy trapping in the ordered regions. By measuring local order parameters we show that the vacancy prefers to be in the disordered regions (domain boundaries). This naturally concentrates the atomic jumps in the domain boundaries, accelerating the growth compared with the usual exchange mechanism that causes jumps to be homogeneously distributed on the lattice.
Resumo:
Domain growth in a two-dimensional binary alloy is studied by means of Monte Carlo simulation of an ABV model. The dynamics consists of exchanges of particles with a small concentration of vacancies. The influence of changing the vacancy concentration and finite-size effects has been analyzed. Features of the vacancy diffusion during domain growth are also studied. The anomalous character of the diffusion due to its correlation with local order is responsible for the obtained fast-growth behavior.
Resumo:
A Monte Carlo study of the late time growth of L12-ordered domains in a fcc A3B binary alloy is presented. The energy of the alloy has been modeled by a nearest-neighbor interaction Ising Hamiltonian. The system exhibits a fourfold degenerated ground state and two kinds of interfaces separating ordered domains: flat and curved antiphase boundaries. Two different dynamics are used in the simulations: the standard atom-atom exchange mechanism and the more realistic vacancy-atom exchange mechanism. The results obtained by both methods are compared. In particular we study the time evolution of the excess energy, the structure factor and the mean distance between walls. In the case of atom-atom exchange mechanism anisotropic growth has been found: two characteristic lengths are needed in order to describe the evolution. Contrarily, with the vacancyatom exchange mechanism scaling with a single length holds. Results are contrasted with existing experiments in Cu3Au and theories for anisotropic growth.
Resumo:
Ordering in a binary alloy is studied by means of a molecular-dynamics (MD) algorithm which allows to reach the domain growth regime. Results are compared with Monte Carlo simulations using a realistic vacancy-atom (MC-VA) mechanism. At low temperatures fast growth with a dynamical exponent x>1/2 is found for MD and MC-VA. The study of a nonequilibrium ordering process with the two methods shows the importance of the nonhomogeneity of the excitations in the system for determining its macroscopic kinetics.
Resumo:
Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case, the pairing matrix elements are considered explicitly.
Resumo:
The extension of density functional theory (DFT) to include pairing correlations without formal violation of the particle-number conservation condition is described. This version of the theory can be considered as a foundation of the application of existing DFT plus pairing approaches to atoms, molecules, ultracooled and magnetically trapped atomic Fermi gases, and atomic nuclei where the number of particles is conserved exactly. The connection with Hartree-Fock-Bogoliubov (HFB) theory is discussed, and the method of quasilocal reduction of the nonlocal theory is also described. This quasilocal reduction allows equations of motion to be obtained which are much simpler for numerical solution than the equations corresponding to the nonlocal case. Our theory is applied to the study of some even Sn isotopes, and the results are compared with those obtained in the standard HFB theory and with the experimental ones.
Resumo:
Summary
Resumo:
In multiobject pattern recognition the height of the correlation peaks should be controlled when the power spectrum of ajoint transform correlator is binarized. In this paper a method to predetermine the value of detection peaks is demonstrated. The technique is based on a frequency-variant threshold in order to remove the intraclass terms and on a suitable factor to normalize the binary joint power spectrum. Digital simulations and experimental hybrid implementation of this method were carried out.
Resumo:
The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in structural glasses. Our results are confirmed by numerical simulations and the link between the type of spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.