933 resultados para Bayesian mixture model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62E16,62F15, 62H12, 62M20.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.

Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.

One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.

Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.

In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.

Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.

The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.

Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, I investigate the use of Bayesian updating rules applied to modeling how social agents change their minds in the case of continuous opinion models. Given another agent statement about the continuous value of a variable, we will see that interesting dynamics emerge when an agent assigns a likelihood to that value that is a mixture of a Gaussian and a uniform distribution. This represents the idea that the other agent might have no idea about what is being talked about. The effect of updating only the first moments of the distribution will be studied, and we will see that this generates results similar to those of the bounded confidence models. On also updating the second moment, several different opinions always survive in the long run, as agents become more stubborn with time. However, depending on the probability of error and initial uncertainty, those opinions might be clustered around a central value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivation: Understanding the patterns of association between polymorphisms at different loci in a population ( linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging. Results: We present a more practical method to build GM that describe LD. The method is based on learning weighted Bayesian network structures from haplotype data, extracting equivalence structure classes and using them to model LD. The results obtained in public data from the HapMap database showed that the method is a promising tool for modeling LD. The associations represented by the learned models are correlated with the traditional measure of LD D`. The method was able to represent LD blocks found by standard tools. The granularity of the association blocks and the readability of the models can be controlled in the method. The results suggest that the causality information gained by our method can be useful to tell about the conservability of the genetic markers and to guide the selection of subset of representative markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper applies Hierarchical Bayesian Models to price farm-level yield insurance contracts. This methodology considers the temporal effect, the spatial dependence and spatio-temporal models. One of the major advantages of this framework is that an estimate of the premium rate is obtained directly from the posterior distribution. These methods were applied to a farm-level data set of soybean in the State of the Parana (Brazil), for the period between 1994 and 2003. The model selection was based on a posterior predictive criterion. This study improves considerably the estimation of the fair premium rates considering the small number of observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large number of models have been derived from the two-parameter Weibull distribution and are referred to as Weibull models. They exhibit a wide range of shapes for the density and hazard functions, which makes them suitable for modelling complex failure data sets. The WPP and IWPP plot allows one to determine in a systematic manner if one or more of these models are suitable for modelling a given data set. This paper deals with this topic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant problem in the collection of responses to potentially sensitive questions, such as relating to illegal, immoral or embarrassing activities, is non-sampling error due to refusal to respond or false responses. Eichhorn & Hayre (1983) suggested the use of scrambled responses to reduce this form of bias. This paper considers a linear regression model in which the dependent variable is unobserved but for which the sum or product with a scrambling random variable of known distribution, is known. The performance of two likelihood-based estimators is investigated, namely of a Bayesian estimator achieved through a Markov chain Monte Carlo (MCMC) sampling scheme, and a classical maximum-likelihood estimator. These two estimators and an estimator suggested by Singh, Joarder & King (1996) are compared. Monte Carlo results show that the Bayesian estimator outperforms the classical estimators in almost all cases, and the relative performance of the Bayesian estimator improves as the responses become more scrambled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Montreal Process indicators are intended to provide a common framework for assessing and reviewing progress toward sustainable forest management. The potential of a combined geometrical-optical/spectral mixture analysis model was assessed for mapping the Montreal Process age class and successional age indicators at a regional scale using Landsat Thematic data. The project location is an area of eucalyptus forest in Emu Creek State Forest, Southeast Queensland, Australia. A quantitative model relating the spectral reflectance of a forest to the illumination geometry, slope, and aspect of the terrain surface and the size, shape, and density, and canopy size. Inversion of this model necessitated the use of spectral mixture analysis to recover subpixel information on the fractional extent of ground scene elements (such as sunlit canopy, shaded canopy, sunlit background, and shaded background). Results obtained fron a sensitivity analysis allowed improved allocation of resources to maximize the predictive accuracy of the model. It was found that modeled estimates of crown cover projection, canopy size, and tree densities had significant agreement with field and air photo-interpreted estimates. However, the accuracy of the successional stage classification was limited. The results obtained highlight the potential for future integration of high and moderate spatial resolution-imaging sensors for monitoring forest structure and condition. (C) Elsevier Science Inc., 2000.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Item noise models of recognition assert that interference at retrieval is generated by the words from the study list. Context noise models of recognition assert that interference at retrieval is generated by the contexts in which the test word has appeared. The authors introduce the bind cue decide model of episodic memory, a Bayesian context noise model, and demonstrate how it can account for data from the item noise and dual-processing approaches to recognition memory. From the item noise perspective, list strength and list length effects, the mirror effect for word frequency and concreteness, and the effects of the similarity of other words in a list are considered. From the dual-processing perspective, process dissociation data on the effects of length, temporal separation of lists, strength, and diagnosticity of context are examined. The authors conclude that the context noise approach to recognition is a viable alternative to existing approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amount of crystalline fraction present in monohydrate glucose crystal-solution mixture up to 110% crystal in relation to solution (crystal:solution=110:100) was determined by water activity measurement. It was found that the water activity had a strong linear correlation (R-2=0.994) with the amount of glucose present above saturation. Difference in the water activities of the crystal-solution mixture (a(w1)) and the supersaturated solution (a(w2)) by re-dissolving the crystalline fraction allowed calculation of the amount of crystalline phase present (DeltaG) in the mixture by an equation DeltaG=846.97(a(w1)-a(w2)). Other methods such as Raoult's, Norrish and Money-Born equations were also tested for the prediction of water activity of supersaturated glucose solution. (C) 2003 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the purpose of developing a longitudinal model to predict hand-and-foot syndrome (HFS) dynamics in patients receiving capecitabine, data from two large phase III studies were used. Of 595 patients in the capecitabine arms, 400 patients were randomly selected to build the model, and the other 195 were assigned for model validation. A score for risk of developing HFS was modeled using the proportional odds model, a sigmoidal maximum effect model driven by capecitabine accumulation as estimated through a kinetic-pharmacodynamic model and a Markov process. The lower the calculated creatinine clearance value at inclusion, the higher was the risk of HFS. Model validation was performed by visual and statistical predictive checks. The predictive dynamic model of HFS in patients receiving capecitabine allows the prediction of toxicity risk based on cumulative capecitabine dose and previous HFS grade. This dose-toxicity model will be useful in developing Bayesian individual treatment adaptations and may be of use in the clinic.