987 resultados para Bayesian Modelling
Resumo:
There are both theoretical and empirical reasons for believing that the parameters of macroeconomic models may vary over time. However, work with time-varying parameter models has largely involved Vector autoregressions (VARs), ignoring cointegration. This is despite the fact that cointegration plays an important role in informing macroeconomists on a range of issues. In this paper we develop time varying parameter models which permit cointegration. Time-varying parameter VARs (TVP-VARs) typically use state space representations to model the evolution of parameters. In this paper, we show that it is not sensible to use straightforward extensions of TVP-VARs when allowing for cointegration. Instead we develop a specification which allows for the cointegrating space to evolve over time in a manner comparable to the random walk variation used with TVP-VARs. The properties of our approach are investigated before developing a method of posterior simulation. We use our methods in an empirical investigation involving a permanent/transitory variance decomposition for inflation.
Resumo:
Report for the scientific sojourn carried out at the Uppsala Universitet, Sweden, from April to July the 2007. Two series of analogue models are used to explore ductile-frictional contrasts of the basal décollement in the development of oblique and transverse structures simultaneously to thin-skinned shortening. These models simulate the evolution of the Central External Sierras (Southern Pyrenees, Spain), which constitute the frontal emerging part of the southernmost Pyrenean thrust sheet. They are characterized by the presence of transverse N-S to NW-SE anticlines, which are perpendicular to the Pyrenean structural trend and developed in the hangingwall of the Santo Domingo thrust system, detaching on an unevenly distributed Triassic materials (evaporitic-dolomitic interfingerings). Model setup performs a décollement made by three patches of silicone neighbouring pure brittle sand. Model series A test the thickness ratio between overburden and décollement. Model series B test the width of frictional detachment areas. Model results show how deformation reaches further in areas detached on ductile layer whereas frictional décollement areas assimilate the strain by means of an additional uplift. This replicates the structural style of Central External Sierras: higher structural relief of N-S anticlines with regard to orogen-parallel structures, absence of a representative ductile décollement in the core, tilting towards the orogen and foreland-side closure not thrusted by the frontal emerging South-Pyrenean thrust.
Resumo:
1. Statistical modelling is often used to relate sparse biological survey data to remotely derived environmental predictors, thereby providing a basis for predictively mapping biodiversity across an entire region of interest. The most popular strategy for such modelling has been to model distributions of individual species one at a time. Spatial modelling of biodiversity at the community level may, however, confer significant benefits for applications involving very large numbers of species, particularly if many of these species are recorded infrequently. 2. Community-level modelling combines data from multiple species and produces information on spatial pattern in the distribution of biodiversity at a collective community level instead of, or in addition to, the level of individual species. Spatial outputs from community-level modelling include predictive mapping of community types (groups of locations with similar species composition), species groups (groups of species with similar distributions), axes or gradients of compositional variation, levels of compositional dissimilarity between pairs of locations, and various macro-ecological properties (e.g. species richness). 3. Three broad modelling strategies can be used to generate these outputs: (i) 'assemble first, predict later', in which biological survey data are first classified, ordinated or aggregated to produce community-level entities or attributes that are then modelled in relation to environmental predictors; (ii) 'predict first, assemble later', in which individual species are modelled one at a time as a function of environmental variables, to produce a stack of species distribution maps that is then subjected to classification, ordination or aggregation; and (iii) 'assemble and predict together', in which all species are modelled simultaneously, within a single integrated modelling process. These strategies each have particular strengths and weaknesses, depending on the intended purpose of modelling and the type, quality and quantity of data involved. 4. Synthesis and applications. The potential benefits of modelling large multispecies data sets using community-level, as opposed to species-level, approaches include faster processing, increased power to detect shared patterns of environmental response across rarely recorded species, and enhanced capacity to synthesize complex data into a form more readily interpretable by scientists and decision-makers. Community-level modelling therefore deserves to be considered more often, and more widely, as a potential alternative or supplement to modelling individual species.
Resumo:
This paper uses an infinite hidden Markov model (IIHMM) to analyze U.S. inflation dynamics with a particular focus on the persistence of inflation. The IHMM is a Bayesian nonparametric approach to modeling structural breaks. It allows for an unknown number of breakpoints and is a flexible and attractive alternative to existing methods. We found a clear structural break during the recent financial crisis. Prior to that, inflation persistence was high and fairly constant.
Resumo:
The role of land cover change as a significant component of global change has become increasingly recognized in recent decades. Large databases measuring land cover change, and the data which can potentially be used to explain the observed changes, are also becoming more commonly available. When developing statistical models to investigate observed changes, it is important to be aware that the chosen sampling strategy and modelling techniques can influence results. We present a comparison of three sampling strategies and two forms of grouped logistic regression models (multinomial and ordinal) in the investigation of patterns of successional change after agricultural land abandonment in Switzerland. Results indicated that both ordinal and nominal transitional change occurs in the landscape and that the use of different sampling regimes and modelling techniques as investigative tools yield different results. Synthesis and applications. Our multimodel inference identified successfully a set of consistently selected indicators of land cover change, which can be used to predict further change, including annual average temperature, the number of already overgrown neighbouring areas of land and distance to historically destructive avalanche sites. This allows for more reliable decision making and planning with respect to landscape management. Although both model approaches gave similar results, ordinal regression yielded more parsimonious models that identified the important predictors of land cover change more efficiently. Thus, this approach is favourable where land cover change pattern can be interpreted as an ordinal process. Otherwise, multinomial logistic regression is a viable alternative.
Resumo:
In multilevel modelling, interest in modeling the nested structure of hierarchical data has been accompanied by increasing attention to different forms of spatial interactions across different levels of the hierarchy. Neglecting such interactions is likely to create problems of inference, which typically assumes independence. In this paper we review approaches to multilevel modelling with spatial effects, and attempt to connect the two literatures, discussing the advantages and limitations of various approaches.
Resumo:
In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be difficult to determine whether a parameter is identified. For the researcher using Bayesian methods, a lack of identification may not be evident since the posterior of a parameter of interest may differ from its prior even if the parameter is unidentified. We show that this can even be the case even if the priors assumed on the structural parameters are independent. We suggest two Bayesian identification indicators that do not suffer from this difficulty and are relatively easy to compute. The first applies to DSGE models where the parameters can be partitioned into those that are known to be identified and the rest where it is not known whether they are identified. In such cases the marginal posterior of an unidentified parameter will equal the posterior expectation of the prior for that parameter conditional on the identified parameters. The second indicator is more generally applicable and considers the rate at which the posterior precision gets updated as the sample size (T) is increased. For identified parameters the posterior precision rises with T, whilst for an unidentified parameter its posterior precision may be updated but its rate of update will be slower than T. This result assumes that the identified parameters are pT-consistent, but similar differential rates of updates for identified and unidentified parameters can be established in the case of super consistent estimators. These results are illustrated by means of simple DSGE models.
Resumo:
This paper considers the instrumental variable regression model when there is uncertainty about the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of exogenous regressors. This uncertainty can result in a huge number of models. To avoid statistical problems associated with standard model selection procedures, we develop a reversible jump Markov chain Monte Carlo algorithm that allows us to do Bayesian model averaging. The algorithm is very exible and can be easily adapted to analyze any of the di¤erent priors that have been proposed in the Bayesian instrumental variables literature. We show how to calculate the probability of any relevant restriction (e.g. the posterior probability that over-identifying restrictions hold) and discuss diagnostic checking using the posterior distribution of discrepancy vectors. We illustrate our methods in a returns-to-schooling application.
Resumo:
This paper is motivated by the recent interest in the use of Bayesian VARs for forecasting, even in cases where the number of dependent variables is large. In such cases, factor methods have been traditionally used but recent work using a particular prior suggests that Bayesian VAR methods can forecast better. In this paper, we consider a range of alternative priors which have been used with small VARs, discuss the issues which arise when they are used with medium and large VARs and examine their forecast performance using a US macroeconomic data set containing 168 variables. We nd that Bayesian VARs do tend to forecast better than factor methods and provide an extensive comparison of the strengths and weaknesses of various approaches. Our empirical results show the importance of using forecast metrics which use the entire predictive density, instead of using only point forecasts.
Resumo:
This paper presents a theoretical framework analysing the signalling channel of exchange rate interventions as an informational trigger. We develop an implicit target zone framework with learning in order to model the signalling channel. The theoretical premise of the model is that interventions convey signals that communicate information about the exchange rate objectives of central bank. The model is used to analyse the impact of Japanese FX interventions during the period 1999 -2011 on the yen/US dollar dynamics.
Resumo:
One aspect of the case for policy support for renewable energy developments is the wider economic benefits that are expected to be generated. Within Scotland, as with other regions of the UK, there is a focus on encouraging domestically‐based renewable technologies. In this paper, we use a regional computable general equilibrium framework to model the impact on the Scottish economy of expenditures relating to marine energy installations. The results illustrate the potential for (considerable) ‘legacy’ effects after expenditures cease. In identifying the specific sectoral expenditures with the largest impact on (lifetime) regional employment, this approach offers important policy guidance.
Resumo:
One aspect of the case for policy support for renewable energy developments is the wider economic benefits that are expected to be generated. Within Scotland, as with other regions of the UK, there is a focus on encouraging domestically‐based renewable technologies. In this paper, we use a regional computable general equilibrium framework to model the impact on the Scottish economy of expenditures relating to marine energy installations. The results illustrate the potential for (considerable) ‘legacy’ effects after expenditures cease. In identifying the specific sectoral expenditures with the largest impact on (lifetime) regional employment, this approach offers important policy guidance.
Resumo:
The regional economic impact of biofuel production depends upon a number of interrelated factors: the specific biofuels feedstock and production technology employed; the sector’s embeddedness to the rest of the economy, through its demand for local resources; the extent to which new activity is created. These issues can be analysed using multisectoral economic models. Some studies have used (fixed price) Input-Output (IO) and Social Accounting Matrix (SAM) modelling frameworks, whilst a nascent Computable General Equilibrium (CGE) literature has also begun to examine the regional (and national) impact of biofuel development. This paper reviews, compares and evaluates these approaches for modelling the regional economic impacts of biofuels.
Resumo:
This paper presents a theoretical framework analysing the signalling channel of exchange rate interventions as an informational trigger. We develop an implicit target zone framework with learning in order to model the signalling channel. The theoretical premise of the model is that interventions convey signals that communicate information about the exchange rate objectives of central bank. The model is used to analyse the impact of Japanese FX interventions during the period 1999 -2011 on the yen/US dollar dynamics.
Resumo:
The regional economic impact of biofuel production depends upon a number of interrelated factors: the specific biofuels feedstock and production technology employed; the sector’s embeddedness to the rest of the economy, through its demand for local resources; the extent to which new activity is created. These issues can be analysed using multisectoral economic models. Some studies have used (fixed price) Input-Output (IO) and Social Accounting Matrix (SAM) modelling frameworks, whilst a nascent Computable General Equilibrium (CGE) literature has also begun to examine the regional (and national) impact of biofuel development. This paper reviews, compares and evaluates these approaches for modelling the regional economic impacts of biofuels.