974 resultados para Basal euteleosteans
Resumo:
We have explored the localization of the uni chromosome (LG XIX) of Chlamydomonas reinhardtii using the technique of in situ hybridization. Using standardized methods of cell fixation together with large chromosome-specific probes we have studied the position of uni DNA sequences in metaphase and interphase cells. We find that in dividing cells uni probes identify a condensed metaphase chromosome that shows no specialized orientation. In interphase cells uni hybridization signals occur on the anterior edge of the nucleus at a position where basal bodies are normally associated with the nuclear envelope. These data reveal an underlying spatial organization of uni chromosomal DNA within the interphase nucleus that may be significant in terms of the fact that this chromosome encodes numerous functions affecting basal body and flagellar assembly.
Resumo:
Phosphorylation of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II has been suggested to be critical for transcription initiation, activation, or elongation. A kinase activity specific for CTD is a component of the general transcription factor TFIIH. Recently, a cyclin-dependent kinase-activator kinase (MO15 and cyclin H) was found to be associated with TFIIH preparations and was suggested to be the CTD kinase. TFIIH preparations containing mutant, kinase-deficient MO15 lack CTD kinase activity, indicating that MO15 is critical for polymerase phosphorylation. Nonetheless, these mutant TFIIH preparations were fully functional (in vitro) in both basal and activated transcription. These results indicate that CTD phosphorylation is not required for transcription with a highly purified system.
Resumo:
The human general transcription factor TFIIA is one of several factors involved in specific transcription by RNA polymerase II, possibly by regulating the activity of the TATA-binding subunit (TBP) of TFIID. TFIIA purified from HeLa extracts consists of 35-, 19-, and 12-kDa subunits. Here we describe the isolation of a cDNA clone (hTFIIA gamma) encoding the 12-kDa subunit. Using expression constructs derived from hTFIIA gamma and TFIIA alpha/beta (which encodes a 55-kDa precursor to the alpha and beta subunits of natural TFIIA), we have constructed a synthetic TFIIA with a polypeptide composition similar to that of natural TFIIA. The recombinant complex supports the formation of a DNA-TBP-TFIIA complex and mediates both basal and Gal4-VP16-activated transcription by RNA polymerase II in TFIIA-depleted nuclear extracts. In contrast, TFIIA has no effect on tRNA and 5S RNA transcription by RNA polymerase III in this system. We also present evidence that both the p55 and p12 recombinant subunits interact with TBP and that the basic region of TBP is critical for the TFIIA-dependent function of TBP in nuclear extracts.
Resumo:
The interface between Au(hkl) basal planes and the ionic liquid 1-Ethyl-2,3-dimethyl imidazolium bis(trifluoromethyl)sulfonil imide was investigated by using both cyclic voltammetry and laser-induced temperature jump. Cyclic voltammetry showed characteristic features, revealing surface sensitive processes at the interfaces Au(hkl)/[Emmim][Tf2N]. From laser-induced heating the potential of maximum entropy (pme) is determined. Pme is close to the potential of zero charge (pzc) and, therefore, the technique provides relevant interfacial information. The following order for the pme values has been found: Au(111) > Au(100) > Au(110). This order correlates well with work function data and values of pzc in aqueous solutions.
Resumo:
A fragment of a maxilla and isolated theropod teeth from the (?) Middle Jurassic Tiourarén Formation are described. The specimens come from Tadibene, in the rural community of Aderbissinat, Thirozerine Department, Agadez Region, Niger. They were identified through direct comparison with teeth previously described in the literature as well as on the basis of discriminant and morphometric analyses. Our results suggest they belong to Ceratosauridae, Megalosauridae, and the oldest representatives of Spinosauridae. The analyzed sample shows some uncommon characters, such as spinosaurid-like ornamentation in megalosaurid-like teeth, or spinosaurid-like teeth with a low number of denticles, which sheds light on tooth morphology and dental evolution in basal tetanurans and early spinosaurids.
Resumo:
The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various types of basal bodies and cilia, which are needed for sensory neuron and sperm function. Genetics, cell biology and behaviour studies in the fruit fly have unveiled new basal body components and revealed different modes of assembly and functions of basal bodies that are conserved in many other organisms, including human, green algae and plasmodium. Here we describe the various basal bodies of Drosophila, what is known about their composition, structure and function.