349 resultados para BIFUNCTIONAL ORGANOCATALYSTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this thesis was the study of a recently developed class of picolinamide cinchona alkaloid derivatives for the synthesis of Rivastigmine, a biologically active compound used for the treatment of Alzheimer’s disease. Six 9-picolinamide-cinchona alkaloid derivatives were successfully synthesized through simple and effective methods. These catalysts were then applied in the enantioselective reduction of O-protected ketimines (intermediates of Rivastigmine). The hydrosilylation of the N-phenyl ketimines afforded good results with excellent yields and high enantioselectivities, while much lower values, in terms of both enantioselectivity and yield, were obtained in the reduction of N-benzyl ketimines. Preliminary studies on the immobilization of these organocatalysts to different solid supports were conducted, with the purpose of applying them in continuous flow systems, which to date has never been reported; RESUMO: No âmbito deste trabalho, foi estudada a síntese de um composto biologicamente ativo usado para o tratamento da doença de Alzheimer, Rivastigmina, usando uma classe de picolinamidas derivadas de alcaloides de cinchona recentemente desenvolvida. Seis 9-picolinamida derivados de alcaloides de cinchona foram preparados com êxito através de metodologias simples e eficazes. Os organocatalisadores foram posteriormente aplicados na redução enantiosseletiva de cetiminas O-protegidas (intermediários de Rivastigmina). Foram obtidos bons resultados na hidrossililação de N-fenilo cetiminas, com rendimentos excelentes e elevadas enantiosseletividades, enquanto a redução de N-benzilo cetiminas proporcionou valores muito mais baixos, tanto em termos de rendimento como de enantiosseletividade. Com o objetivo de serem aplicados em sistemas de fluxo contínuo, realizaram-se estudos preliminares sobre a imobilização destes organocatalisadores em diferentes suportes sólidos, a qual, ate à data, ainda não foi descrita na literatura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon-supported Pt x –Rh y –Sn z catalysts (x:y:z = 3:1:4, 6:2:4, 9:3:4) are prepared by Pt, Rh, and Sn precursors reduction in different addition order. The materials are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques and are evaluated for the electrooxidation of ethanol in acidic media by cyclic voltammetry, chronoamperometry, and anode potentiostatic polarization. The influence of both the order in which the precursors are added and the composition of metals in the catalysts on the electrocatalytic activity and physico-chemical characteristics of Pt x –Rh y –Sn z /C catalysts is evaluated. Oxidized Rh species prevail on the surface of catalysts synthesized by simultaneous co-precipitation, thus demonstrating the influence of synthesis method on the oxidation state of catalysts. Furthermore, high amounts of Sn in composites synthesized by co-precipitation result in very active catalysts at low potentials (bifunctional effect), while medium Sn load is needed for sequentially deposited catalysts when the electronic effect is most important (high potentials), since more exposed Pt and Rh sites are needed on the catalyst surface to alcohol oxidation. The Pt3–Rh1–Sn4/C catalyst prepared by co-precipitation is the most active at potentials lower than 0.55 V (related to bifunctional effect), while the Pt6–Rh2–Sn4/C catalyst, prepared by sequential precipitation (first Rh and, after drying, Pt + Sn), is the most active above 0.55 V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The organocatalytic activities of highly substituted proline esters obtained through asymmetric [3+2] cycloadditions of azomethine ylides derived from glycine iminoesters have been analyzed by 19F NMR and through kinetic isotope effects. Kinetic rate constants have been determined for unnatural proline esters incorporating different substituents. It has been found that exo-L and endo-L unnatural proline methyl esters yield opposite enantiomers in aldol reactions between cyclic ketones and aromatic aldehydes. The combined results reported in this study show subtle and remote effects that determine the organocatalytic behavior of these synthetic but readily available amino acid derivatives. These data can be used as design criteria for the development of new pyrrolidine-based organocatalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis explores two distinct parts of mitochondrial physiology: the role of mitochondria in generation of reactive oxygen species (ROS) and mitochondrial morphology and dynamics within cells. The first area of research is covered in Chapters 1-8. Mitochondrial biofunctionality and ROS production are discussed in Chapter 1, followed by the strategy of targeting bioactive compounds to mitochondria by linking them to lipophilic triphenylphosphonium cations (TPP) (Chapter 2). ROS sensors relevant to the research are reviewed in Chapter 3. Chapter 4 presents design and synthesis of novel probes for superoxide detection in mitochondria (MitoNeo-D), cytosol (Neo-D) and extracellular environment (ExCellNeo-D). The results of biological validation of MitoNeo-D and Neo-D performed in the MRC MBU in Cambridge are presented in Chapter 5. A dicationic hydrogen peroxide sensor that utilizes in situ click chemistry is discussed in Chapter 6. Preliminary work on the synthesis of mitochondria-targeted superoxide generators, which led to the development of mitochondria-targeted analogue of paraquat, MitoPQ, is presented in Chapter 7. A set of bifunctional probes (BCN-Mal, BCN-E-BCN and Mito-iTag) for assessing the redox states of protein thiols is discussed in Chapter 8 along with their biological validation. The second part of the thesis is aimed at the study of mitochondrial morphology and dynamics and is presented in Chapters 9-11. Chapter 9 provides background on the classes of fluorophores relevant to the research, the phenomenon of fluorescence quenching and the principle of photoactivation with examples of photoactivatable fluorophores. Next, the background on mitochondrial morphology and heterogeneity is presented in Chapter 10, followed by the ways of imaging and tracking mitochondria within cells by conventional fluorophores and by photoactivatable fluorophores exploiting super-resolution microscopy. Chapter 11 presents the design and synthesis of four photoactivatable fluorophores for mitochondrial tracking, MitoPhotoRhod110, MitoPhotoNIR, Photo-E+, MitoPhoto-E+, along with results of biological validation of MitoPhotoNIR. The results and discussion concludes with Chapter 12, which is a summary and suggestions for future work, followed by the chemistry experimental procedures (Chapter 13), materials and methods for biological experiments (Chapter 14) and references.