961 resultados para B-Cell


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Developmental commitment involves activation of lineage-specific genes, stabilization of a lineage-specific gene expression program, and permanent inhibition of inappropriate characteristics. To determine how these processes are coordinated in early T cell development, the expression of T and B lineage-specific genes was assessed in staged subsets of immature thymocytes. T lineage characteristics are acquired sequentially, with germ-line T cell antigen receptor-β transcripts detected very early, followed by CD3ɛ and terminal deoxynucleotidyl transferase, then pTα, and finally RAG1. Only RAG1 expression coincides with commitment. Thus, much T lineage gene expression precedes commitment and does not depend on it. Early in the course of commitment to the T lineage, thymocytes lose the ability to develop into B cells. To understand how this occurs, we also examined expression of well defined B lineage-specific genes. Although λ5 and Ig-α are not expressed, the μ0 and Iμ transcripts from the unrearranged IgH locus are expressed early, in distinct patterns, then repressed just before RAG1 expression. By contrast, RNA encoding the B cell receptor component Ig-β was found to be transcribed in all immature thymocyte subpopulations and throughout most thymocyte differentiation. Ig-β expression is down-regulated only during positive selection of CD4+CD8– cells. Thus several key participants in the B cell developmental program are expressed in non-B lineage-committed cells, and one is maintained even through commitment to an alternative lineage, and repressed only after extensive T lineage differentiation. The results show that transcriptional activation of “lymphocyte-specific” genes can occur in uncommitted precursors, and that T lineage commitment is a composite of distinct positive and negative regulatory events.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CD22 is a B cell-restricted glycoprotein involved in signal transduction and modulation of cellular activation. It is also an I-type lectin (now designated Siglec-2), whose extracellular domain can specifically recognize α2–6-linked sialic acid (Sia) residues. This activity is postulated to mediate intercellular adhesion and/or to act as a coreceptor in antigen-induced B cell activation. However, studies with recombinant CD22 indicate that the lectin function can be inactivated by expression of α2–6-linked Sia residues on the same cell surface. To explore whether this masking phenomenon affects native CD22 on B cells, we first developed a probe to detect the lectin activity of recombinant CD22 expressed on Chinese hamster ovary cells (which have no endogenous α2–6-linked Sia residues). This probe is inactive against CD22-positive B lymphoma cells and Epstein–Barr virus-transformed lymphoblasts which express high levels of α2–6-linked Sia residues. Enzymatic desialylation unmasks the CD22 lectin activity, indicating that endogenous Sia residues block the CD22 lectin-binding site. Truncation of the side chains of cell surface Sia residues by mild periodate oxidation (known to abrogate Sia recognition by CD22) also had this unmasking effect, indicating that the effects of desialylation are not due to a loss of negative charge. Normal resting B cells from human peripheral blood gave similar findings. However, the lectin is partially unmasked during in vitro activation of these cells. Thus, the lectin activity of CD22 is restricted by endogenous sialylation in resting B cells and may be transiently unmasked during in vivo activation, perhaps to modulate intercellular or intracellular interactions at this critical stage in the humoral response.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To study RAG2 gene regulation in vivo, we developed a blastocyst complementation method in which RAG2-deficient embryonic stem cells were transfected with genomic clones containing RAG2 and then assessed for their ability to generate lymphocytes. A RAG2 genomic clone that contained only the RAG2 promoter sequences rescued V(D)J recombination in RAG2-deficient pro-B cell lines, but did not rescue development of RAG2-deficient lymphocytes in vivo. However, inclusion of varying lengths of sequences 5′ of the RAG2 promoter generated constructs capable of rescuing only in vivo B cell development, as well as other constructs that rescued both B and T cell development. In particular, the 2-kb 5′ region starting just upstream of the RAG2 promoter, as well as the region from 2–7 kb 5′, could independently drive B cell development, but not efficient T cell development. Deletion of the 2-kb 5′ region from the murine germ line demonstrated that this region was not required for RAG expression sufficient to generate normal B or T cell numbers, implying redundancy among 5′ elements. We conclude that RAG2 expression in vivo requires elements beyond the core promoter, that such elements contribute to differential regulation in the B vs. T lineages, and that sequences sufficient to direct B cell expression are located in the promoter-proximal 5′ region.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Fas/Fas ligand (FasL) system participates in regulation of the immune system through the apoptotic process. However, the extent to which abnormalities in this system are involved in the loss of self-tolerance and development of autoimmune disease not associated with Fas/FasL mutations remains unknown. The present study addresses this issue in Fas/FasL-intact, systemic lupus erythematosus (SLE)-prone (NZB × NZW) (NZB/W) F1 mice. While splenic B cells from 2-month-old mice before overt SLE expressed Fas poorly, in vitro stimulation with an agonistic anti-CD40 mAb up-regulated their Fas expression, thus revealing the existence of two populations: one was Fashigh and highly susceptible to anti-Fas mAb-induced apoptosis, and the other was Faslow and apoptosis-resistant. The Faslow cells were included in the CD5+ B cell subpopulation and contained most of the cells that produced IgM anti-DNA antibodies. The isotype of anti-DNA antibodies switches from IgM to IgG in NZB/W F1 mice at ages beginning at about 6 months. These IgG anti-DNA antibodies were produced almost exclusively by a subpopulation of splenic B cells that spontaneously expressed low levels of Fas in vivo and were apoptosis-resistant. The findings indicate that precursor B cells for autoantibody production and presumably autoantibody-secreting cells in these mice are relatively resistant to Fas-mediated apoptosis, a finding supporting the concept that abnormalities of Fas-mediated apoptotic process are involved in the development of autoreactive B cells in Fas/FasL-intact autoimmune disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Among the four subtypes of Hodgkin disease (HD), lymphocyte-predominant (LP) HD is now generally considered as a separate entity. The B cell nature of the typical Hodgkin and Reed–Sternberg (HRS) cells and their variants (L and H, lymphocytic and histiocytic cells) in LP HD has long been suspected, but the question of whether these cells represent a true tumor clone is unclear. We previously demonstrated clonal Ig gene rearrangements in one case of LP HD. In the present study, five cases of LP HD were analyzed by micromanipulation of single HRS cells from frozen tissue sections and DNA amplification of rearranged Ig heavy chain genes from those cells. Clonal V gene rearrangements harboring somatic mutations were detected in each case. In three cases ongoing somatic mutation was evident. This shows that HRS cells in LP HD are a clonal tumor population derived from germinal center B cells. The pattern of somatic mutation indicates that HRS cells in LP HD are selected for antibody expression. This, and the presence of ongoing mutation discriminates LP from classical HD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human T lymphocytes have been shown to express inhibitory natural killer cell receptors (NKR), which can down-regulate T cell antigen receptor-mediated T cell function, including cytolytic activity. In the present study, we demonstrate that CD3+NKR+ cells can be identified in HIV-infected patients. HIV-specific cytolytic activity was analyzed in five patients in whom autologous lymphoblastoid B cell lines could be derived as a source of autologous target cells. Phytohemagglutinin-activated T cell populations that had been cultured in interleukin 2 displayed HIV-specific cytotoxic T lymphocyte (CTL) activity against HIV env, gag, pol, and nef in 3 of 5 patients. Addition of anti-NKR mAb of IgM isotype could increase the specific CTL activity. Moreover, in one additional patient, HIV-specific CTL activity was undetectable; however, after addition of anti-NKR mAb such CTL activity appeared de novo. Similar results were obtained by analysis of CD3+NKR+ clones derived from two patients. These data provide direct evidence that CD3+NKR+ cells may include antigen (HIV)-specific CTLs and that mAb-mediated masking of inhibitory NKR may revert the down-regulation of CTL function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The tetraspanin CD81 is ubiquitously expressed and associated with CD19 on B lymphocytes and with CD4 and CD8 on T lymphocytes. Analysis of mice with disrupted CD81 gene reveals normal T cells but a distinct abnormality in B cells consisting of decreased expression of CD19 and severe reduction in peritoneal B-1 cells. CD81-deficient B cells responded normally to surface IgM crosslinking, but had severely impaired calcium influx following CD19 engagement. CD81-deficient mice had increased serum IgM and IgA and an exaggerated antibody response to the type II T independent antigen TNP-Ficoll. These results suggest that CD81 is important for CD19 signaling and B cell function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

B cell development and humoral immune responses are controlled by signaling thresholds established through the B lymphocyte antigen receptor (BCR) complex. BCR signaling thresholds are differentially regulated by the CD22 and CD19 cell surface receptors in vivo. B cells from CD22-deficient mice exhibit characteristics of chronic stimulation and are hyper-responsive to BCR crosslinking with augmented intracellular Ca2+ responses. By contrast, B cells from CD19-deficient mice are hypo-responsive to transmembrane signals. To identify signaling molecules involved in the positive and negative regulation of signaling thresholds, the signal transduction pathways activated after BCR crosslinking were examined in CD22- and CD19-deficient B cells. These comparisons revealed that tyrosine phosphorylation of Vav protein was uniquely augmented after BCR or CD19 crosslinking in CD22-deficient B cells, yet was modest and transient after BCR crosslinking in CD19-deficient B cells. Ligation of CD19 and CD22 in vivo is likely to positively and negatively regulate BCR signaling, respectively, because CD19 crosslinking was more efficient than BCR crosslinking at inducing Vav phosphorylation. However, simultaneous crosslinking of CD19 with the BCR resulted in a substantial decrease in Vav phosphorylation when CD22 was expressed. Thus, the differential regulation of Vav tyrosine phosphorylation by CD19 and CD22 may provide a molecular mechanism for adjusting BCR signaling thresholds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The variable (V) regions of immunoglobulin heavy and light chains undergo high rates of somatic mutation during the immune response. Although point mutations accumulate throughout the V regions and their immediate flanking sequences, analysis of large numbers of mutations that have arisen in vivo reveal that the triplet AGC appears to be most susceptible to mutation. We have stably transfected B cell lines with γ2a heavy chain constructs containing TAG nonsense codons in their V regions that are part of either a putative (T)AGC hot spot or a (T)AGA non-hot spot motif. Using an ELISA spot assay to detect revertants and fluctuation analysis to determine rates of mutation, the rate of reversion of the TAG nonsense codon has been determined for different motifs in different parts of the V region. In the NSO plasma cell line, the (T)AGC hot spot motif mutates at rates of ≈6 × 10−4/bp per generation and ≈3 × 10−5/bp per generation at residues 38 and 94 in the V region. At each of these locations, the (T)AGC hot spot motif is 20–30 times more likely to undergo mutation than the (T)AGA non-hot spot motif. Moreover, the AGA non-hot spot motif mutates at as high a rate as the hot spot motif when it is located adjacent to hot spot motifs, suggesting that more extended sequences influence susceptibility to mutation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hypermethylated in cancer (HIC-1), a new candidate tumor suppressor gene located in 17p13.3, encodes a protein with five C2H2 zinc fingers and an N-terminal broad complex, tramtrack, and bric à brac/poxviruses and zinc-finger (BTB/POZ) domain found in actin binding proteins or transcriptional regulators involved in chromatin modeling. In the human B cell lymphoma (BCL-6) and promyelocityc leukemia (PLZF) oncoproteins, this domain mediates transcriptional repression through its ability to recruit a silencing mediator of retinoid and thyroid hormone receptor (SMRT)/nuclear receptor corepressor (N-CoR)-mSin3A-histone deacetylase (HDAC) complex, a mechanism shared with numerous transcription factors. HIC-1 appears unique because it contains a 13-aa insertion acquired late in evolution, because it is not found in its avian homologue, γF1-binding protein isoform B (γFBP-B), a transcriptional repressor of the γF-crystallin gene. This insertion, located in a conserved region involved in the dimerization and scaffolding of the BTB/POZ domain, mainly affects slightly the ability of the HIC-1 and γFBP-B BTB/POZ domains to homo- and heterodimerize in vivo, as shown by mammalian two-hybrid experiments. Both the HIC-1 and γFBP-B BTB/POZ domains behave as autonomous transcriptional repression domains. However, in striking contrast with BCL-6 and PLZF, both HIC-1 and γFBP-B similarly fail to interact with members of the HDAC complexes (SMRT/N-CoR, mSin3A or HDAC-1) in vivo and in vitro. In addition, a general and specific inhibitor of HDACs, trichostatin A, did not alleviate the HIC-1- and γFBP-B-mediated transcriptional repression, as previously shown for BCL-6. Taken together, our studies show that the recruitment onto target promoters of an HDAC complex is not a general property of transcriptional repressors containing a conserved BTB/POZ domain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PIR-A and PIR-B are activating and inhibitory Ig-like receptors on murine B lymphocytes, dendritic cells, and myeloid-lineage cells. The inhibitory function of PIR-B is mediated via its cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, whereas PIR-A pairs with the Fc receptor common γ chain to form an activating receptor complex. In these studies, we observed constitutive tyrosine phosphorylation of PIR-B molecules on macrophages and B lymphocytes, irrespective of the cell activation status. Splenocyte PIR-B molecules were constitutively associated with the SHP-1 protein tyrosine phosphatase and Lyn protein tyrosine kinase. In Lyn-deficient mice, PIR-B tyrosine phosphorylation was greatly reduced. Unexpectedly, tyrosine phosphorylation of PIR-B was not observed in most myeloid and B cell lines but could be induced by ligation of the PIR molecules. Finally, the phosphorylation status of PIR-B was significantly reduced in MHC class I-deficient mice, although not in mice deficient in TAP1 or MHC class II expression. These findings suggest a physiological inhibitory role for PIR-B that is regulated by endogenous MHC class I-like ligands.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The murine B29 (Igβ) promoter is B cell specific and contains essential SP1, ETS, OCT, and Ikaros motifs. Flanking 5′ DNA sequences inhibit B29 promoter activity, suggesting this region contains silencer elements. Two adjacent 5′ DNA segments repress transcription by the murine B29 promoter in a position- and orientation-independent manner, analogous to known silencers. Both these 5′ segments also inhibit transcription by several heterologous promoters in B cells, including mb-1, c-fos, and human B29. These 5′ segments also inhibit transcription by the c-fos promoter in T cells suggesting they are not B cell-specific elements. DNase I footprint analyses show an approximately 70-bp protected region overlapping the boundary between the two negative regulatory DNA segments and corresponding to binding sites for at least two different DNA-binding proteins. Within this footprint, two unrelated 30-bp cis-acting DNA motifs (designated TOAD and FROG) function as position- and orientation-independent silencers when located directly 5′ of the murine B29 promoter. These two silencer motifs act cooperatively to restrict the transcriptional activity of the B29 promoter. Neither of these motifs resembles any known silencers. Mutagenesis of the TOAD and FROG motifs in their respective 5′ DNA segments eliminates the silencing activity of these upstream regions, indicating these two motifs as the principal B29 silencer elements within these regions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

HOX11, a divergent homeodomain-containing transcription factor, was isolated from the breakpoint of the nonrandom t(10;14)(q24;q11) chromosome translocation found in human T cell acute lymphoblastic leukemias. The translocation places the HOX11 coding sequence under the transcriptional control of TCR α/δ regulatory elements, resulting in ectopic expression of a normal HOX11 protein in thymocytes. To investigate the oncogenic potential of HOX11, we targeted its expression in lymphocytes of transgenic mice by placing the human cellular DNA under the transcriptional control of Ig heavy chain or LCK regulatory sequences. Only IgHμ-HOX11 mice expressing low levels of HOX11 were viable. During their second year of life, all HOX11 transgenic mice became terminally ill with more than 75% developing large cell lymphomas in the spleen, which frequently disseminated to thymus, lymph nodes, and other nonhematopoietic tissues. Lymphoma cells were predominantly clonal IgM+IgD+ mature B cells. Repopulation of severe combined immunodeficient mice with cells from hyperplastic spleens indicated that the HOX11 tumor phenotype was transplantable. Before tumor development, expression of the transgene did not result in perturbations in lymphopoiesis; however, lymphoid hyperplasia involving the splenic marginal zones was present in 20% of spleens. Our studies provide direct evidence that expression of HOX11 in lymphocytes leads to malignant transformation. These mice are a useful model system to study mechanisms involved in transformation from B-lineage hyperplasia to malignant lymphoma and for testing novel approaches to therapy. They represent a novel animal model for non-Hodgkin’s lymphoma of peripheral mature B cell origin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During B cell development, rearrangement and expression of Ig heavy chain (HC) genes promote development and expansion of pre-B cells accompanied by the onset of Ig light chain (LC) variable region gene assembly. To elucidate the signaling pathways that control these events, we have tested the ability of activated Ras expression to promote B cell differentiation to the stage of LC gene rearrangement in the absence of Ig HC gene expression. For this purpose, we introduced an activated Ras expression construct into JH-deleted embryonic stem cells that lack the ability to assemble HC variable region genes and assayed differentiation potential by recombination activating gene (RAG) 2-deficient blastocyst complementation. We found that activated Ras expression induces the progression of B lineage cells beyond the developmental checkpoint ordinarily controlled by μ HC. Such Ras/JH-deleted B cells accumulate in the periphery but continue to express markers associated with precursor B cells including RAG gene products. These peripheral Ras/JH-deleted B cell populations show extensive Ig LC gene rearrangement but maintain an extent of κ LC gene rearrangement and a preference for κ over λ LC gene rearrangement similar to that of wild-type B cells. We discuss these findings in the context of potential mechanisms that may regulate Ig LC gene rearrangement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

NY-ESO-1 elicits frequent antibody responses in cancer patients, accompanied by strong CD8+ T cell responses against HLA-A2-restricted epitopes. To broaden the range of cancer patients who can be assessed for immunity to NY-ESO-1, a general method was devised to detect T cell reactivity independent of prior characterization of epitopes. A recombinant adenoviral vector encoding the full cDNA sequence of NY-ESO-1 was used to transduce CD8-depleted peripheral blood lymphocytes as antigen-presenting cells. These modified antigen-presenting cells were then used to restimulate memory effector cells against NY-ESO-1 from the peripheral blood of cancer patients. Specific CD8+ T cells thus sensitized were assayed on autologous B cell targets infected with a recombinant vaccinia virus encoding NY-ESO-1. Strong polyclonal responses were observed against NY-ESO-1 in antibody-positive patients, regardless of their HLA profile. Because the vectors do not cross-react immunologically, only responses to NY-ESO-1 were detected. The approach described here allows monitoring of CD8+ T cell responses to NY-ESO-1 in the context of various HLA alleles and has led to the definition of NY-ESO-1 peptides presented by HLA-Cw3 and HLA-Cw6 molecules.