941 resultados para Böhme, Jakob, 1575-1624.
Resumo:
The vacuolation (spongiform change) and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus and cerebellum of 11 patients with sporadic Creutzfeldt-Jakob disease (CJD). The density of the vacuolation, averaged over patients, was greatest in the occipital cortex and cerebellum and least in the dentate gyrus. The degree of PrP deposition was similar in the different cortical areas and in the cerebellum but significantly lower in the hippocampus and absent in the dentate gyrus. There were no significant differences in the extent of the vacuolation and PrP deposition in the upper and lower cortical laminae. Vacuolation and PrP deposition in the upper cortex were both positively correlated with corresponding levels in the lower cortex. In addition, in the parietal cortex and parahippocampal gyrus, the density of the vacuolation was positively correlated with the level of PrP deposition but no such correlations were observed in the remaining areas studied. This quantitative study suggested that: (1) the pathological changes were most severe in the occipital cortex and cerebellum, while the hippocampus was least affected, (2) the pathological changes affect the upper and lower cortical laminae, and (3) the degree of correlation between the density of the vacuolation and PrP deposition may be dependent on brain region.
Resumo:
Correlations between the clustering patterns of the vacuolation ('spongiform change'), prion protein (PrP) deposits, and surviving neurons were studied in the cerebral cortex, hippocampus, and cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (sCJD). Differences in the sizes of the clusters of vacuoles were observed between brain regions and in the cerebral cortex, between the upper and lower laminae. With the exception of the parietal cortex, mean cluster size of the vacuoles was similar to that of the PrP deposits in each brain area. Clusters of the vacuoles were spatially correlated with the density of surviving neurons and with the clusters of PrP deposits in 47% and 53% of cortical areas analysed respectively but there were few spatial correlation between the PrP deposits and the density of surviving neurons. The data suggest that the pathology of sCJD may spread through the brain via specific anatomical pathways. Development of the clusters of vacuoles is spatially related to surviving neurons while the appearance of clusters of PrP deposits is related to the development of the vacuolation.
Resumo:
Similar pathological processes may be involved in the deposition of extracellular proteins in the brains of patients with Creutzfeldt-Jakob disease (CJD) and Alzheimer's disease (AD). Hence, this study compared the spatial patterns of prion protein (PrP) deposits in the cerebral cortex and hippocampus in cases of sporadic CJD with those of β-amyloid (Aβ) deposits in sporadic AD. PrP and Aβ deposits were aggregated into clusters and, in 90% of brain areas in CJD and 57% in AD, the clusters were regularly distributed parallel to the tissue boundary. In a significant proportion of cortical analyses, the mean diameter of the clusters of PrP and Aβ deposits were similar to those of the cells of origin of the cortico-cortical pathways. Aβ deposits in AD were distributed more frequently in larger-sized clusters than PrP deposits in CJD. In addition, in the hippocampus and dentate gyrus, clustering of Aβ deposits was observed in AD but PrP deposits were rare in these regions in CJD. The size, location and distribution of the extracellular protein deposits within the cortex of both disorders was consistent with the degeneration of the cortico-cortical pathways. Furthermore, spread of the pathology along these pathways may be a pathogenic feature common to CJD and AD. © 2001 Elsevier Science Ireland Ltd.
Resumo:
The laminar distributions of the pathological changes in the cerebral cortex were compared in the prion diseases sporadic Creutzfeldt-Jakob disease (sCJD) and variant CJD (vCJD). First, in some cortical regions the vacuolation (‘spongiform change’) was more generally distributed across the cortex in sCJD. Second, there was greater neuronal loss in the upper cortex in vCJD and in the lower cortex in sCJD. Third, the ‘diffuse’ and ‘florid’ prion protein (PrPsc) deposits were more frequently distributed in the upper cortex in vCJD and the ‘synaptic’ deposits in the lower cortex in sCJD. Fourth, there was a significant gliosis mainly affecting the lower cortex of both disorders. The data suggest that the pattern of cortical degeneration is different in sCJD and vCJD which may reflect differences in aetiology and the subsequent spread of prion pathology in the brain.
Resumo:
The objective of this article was to determine whether the pathological changes of Creutzfeldt-Jacob disease (CJD) were related to the brain microcirculation. Hence, the spatial correlations between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles were studied in immunolabelled sections of the cerebral cortex, hippocampus, and cerebellum in two subtypes of CJD, viz., sporadic CJD (sCJD) and variant CJD (vCJD). In sCJD, both the vacuolation and the ‘synaptic-type’ PrP deposits were spatially correlated with the microvessels; the PrP deposits being more strongly correlated than the vacuoles. In vCJD, there were no significant spatial correlations between either the vacuolation or the diffuse-type of PrP deposit and the microvessels. By contrast, a consistent pattern of spatial correlation was observed in gyri of the cerebral cortex between the florid PrP deposits and microvessels. In both sCJD and vCJD, the frequency of positive spatial correlations was similar in the different gyri of the cerebral cortex and in the upper compared with the lower laminae. In conclusion, the microcirculation may be more significantly involved in determining the pathological changes in sCJD than in vCJD. The spatial correlations of the florid PrP deposits in vCJD and the synaptic deposits in sCJD and the blood vessels may be attributable to factors associated with the microcirculation which enhance the aggregation of PrP molecules rather than representing a possible haematogenous spread of the disease. S
Resumo:
Quantitative variations in the density and distribution of the vacuolation ('spongiform change'), surviving neurons, and prion protein (PrP) deposits were studied in eight brain regions from 11 cases of variant Creutzfeldt-Jakob disease (vCJD). Principal components analysis (PCA) was used to study the similarities and differences between cases and to identify the neuropathological variables which could best account for these variations. Two principal components (PC) were extracted from the data accounting in total for 93.4% of the variance; the majority of the variance (90%) being associated with PC1. Some clustering of the 11 cases in relation to PC1 and PC2 was evident. The densities of the vacuolation in the occipital cortex and the molecular layer of the cerebellum were positively and negatively correlated, respectively, with PC1. No significant variation between cases was associated with PrP deposition. These data suggest that vCJD cases have a consistent neuropathological profile characterised by the presence of vacuolation, neuronal loss and PrP deposition in the form of florid and non-florid deposits. However, there are quantitative variations between cases in the development of the vacuolation especially affecting the occipital cortex and cerebellum. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The spatial pattern of the vacuolation ('spongiform change') was studied in the upper and lower laminae of the cerebral cortex, the CA1/CA2 sectors of the hippocampus and the molecular layer of the cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (CJD). Individual vacuoles were grouped into clusters, 50 to >1600 μm in diameter and, in the majority of tissue sections, the vacuole clusters were distributed with regular periodicity parallel to the tissue boundary. The size of the vacuole clusters was positively correlated with patient age in the lower laminae of the occipital cortex and the inferior temporal gyrus (ITG) and negatively correlated with age in the hippocampus. In addition, the size of the vacuole clusters was positively correlated with disease duration in the upper laminae of the ITG. The size and distribution of the vacuole clusters suggests that the vacuolation in CJD reflects the degeneration of specific brain pathways and supports the hypothesis that prion pathology may spread through the brain along well defined anatomical pathways. (C) 2000 Elsevier Science Ireland Ltd.
Resumo:
Deposition of insoluble prion protein (PrP) in the brain in the form of protein aggregates or deposits is characteristic of the ‘transmissible spongiform encephalopathies’ (TSEs). Understanding the growth and development of PrP aggregates is important both in attempting to elucidate the pathogenesis of prion disease and in the development of treatments designed to inhibit the spread of prion pathology within the brain. Aggregation and disaggregation of proteins and the diffusion of substances into the developing aggregates (surface diffusion) are important factors in the development of protein deposits. Mathematical models suggest that if either aggregation/disaggregation or surface diffusion is the predominant factor, then the size frequency distribution of the resulting protein aggregates will be described by either a power-law or a log-normal model respectively. This study tested this hypothesis for two different populations of PrP deposit, viz., the diffuse and florid-type PrP deposits characteristic of patients with variant Creutzfeldt-Jakob disease (vCJD). The size distributions of the florid and diffuse deposits were fitted by a power-law function in 100% and 42% of brain areas studied respectively. By contrast, the size distributions of both types of aggregate deviated significantly from a log-normal model in all areas. Hence, protein aggregation and disaggregation may be the predominant factor in the development of the florid deposits. A more complex combination of factors appears to be involved in the pathogenesis of the diffuse deposits. These results may be useful in the design of treatments to inhibit the development of PrP aggregates in vCJD.
Resumo:
This article describes the symptoms and pathology associated with Creutzfeldt-Jakob disease and prion disease, how prion protein may cause disease and the visual aspects of prion diseases.
Resumo:
Variant Creutzfeldt-Jakob disease (vCJD) was first described in the UK in 1996 and is one of a group of diseases, the transmissible spongiform encephalopathies (TSEs) which affect both animals and humans. This review discusses vCJD in the context of other TSEs, considers the controversial 'prion' hypothesis as to the cause of the disease, the ocular features of vCJD, and the possible transmission of the disease via optoetric devices.
Resumo:
The objective of this study was to determine the degree of white matter pathology in the cerebral cortex in cases of variant Creutzfeldt-Jakob disease (vCJD) and to study the relationships between the white matter and grey matter pathologies. Hence, the pathological changes in cortical white matter were studied in individual gyri of the frontal, parietal, occipital, and temporal cortex in eleven cases of vCJD. Vacuolation (‘spongiform change’), deposition of the disease form of prion protein (PrPsc) in the form of discrete PrP deposits, and gliosis were observed in the white matter of virtually all cortical regions studied. Mean density of the vacuoles in the white matter was greater in the parietal lobe compared with the frontal, occipital, and temporal lobes but there were fewer glial cells in the occipital lobe compared with the other cortical regions. In the white matter of the frontal cortex, vacuole density was negatively correlated with the density of both glial cell nuclei and the PrP deposits. In addition, the densities of glial cells and PrP deposits were positively correlated in the frontal and parietal cortex. In the white matter of the frontal cortex and inferior temporal gyrus, there was a negative correlation between the densities of the vacuoles and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In addition, in the frontal cortex, vacuole density in the white matter was negatively correlated with the density of the diffuse PrP deposits in laminae II/III and V/VI of the adjacent grey matter. The densities of PrP deposits in the white matter of the frontal cortex were positively correlated with the density of the diffuse PrP deposits in laminae II/III and V/V1 and with the number of surviving neurons in laminae V/V1. The data suggest that in the white matter in vCJD, gliosis is associated with the development of PrP deposits while the appearance of the vacuolation is a later development. In addition, neuronal loss and PrP deposition in the lower cortical laminae of the grey matter may be a consequence of axonal degeneration within the white matter.
Resumo:
This article describes: 1) the symptoms and pathology of CJD, 2) how prion proteins may cause CJD, 3) the visual signs and symptoms of CJD, and 4) the scientific evidence which supports a possible transmission of CJD via optometric devices.
Resumo:
In variant Creutzfeldt-Jakob disease (vCJD), a disease linked to bovine spongiform encephalopathy (BSE), florid-type prion protein (PrP(sc)) deposits are aggregated around the larger diameter (> 10 µm) cerebral microvessels. Clustering of PrP(sc) deposits around blood vessels may result from blood-borne prions or be a consequence of the cerebral vasculature influencing the development of the florid deposits. To clarify the factors involved, the dispersion of the florid PrP(sc) deposits was studied around the larger diameter microvessels in the neocortex, hippocampus, and cerebellum of ten cases of vCJD. In the majority of brain regions, florid deposits were clustered around the larger diameter vessels with a mean cluster size of between 50 µm and 628 µm. With the exception of the molecular layer of the dentate gyrus, the density of the florid deposits declined as a negative exponential function of distance from a blood vessel profile suggesting that diffusion of molecules from blood vessels is a factor in the formation of the florid deposits. Diffusion of PrP(sc) directly into the brain via the microvasculature has been demonstrated in vCJD in a small number of cases. However, the distribution of the prion deposits in vCJD is more likely to reflect molecular 'chaperones' diffusing from vessels and promoting the aggregation of pre-existing PrP(sc) in the vicinity of the vessels to form florid deposits.
Resumo:
Objective: To quantify cortical white matter pathology in variant Creutzfeldt-Jakob disease (vCJD) and to correlate white and grey matter pathologies. Methods: Pathological changes were studied in immunolabeled sections of the frontal, parietal, occipital, and temporal cortex of eleven cases of vCJD. Results: Vacuolation ("spongiform change"), deposition of the disease form of prion protein (PrPsc), and a glial cell reaction were observed in the white matter. The density of the vacuoles was greatest in the white matter of the occipital cortex and glial cell density in the inferior temporal gyrus (ITG). Florid-type PrPsc deposits were present in approximately 50% of white matter regions studied. In the white matter of the frontal cortex (FC), vacuole density was negatively correlated with the densities of both glial cell nuclei and PrPsc deposits. In addition, in the frontal and parietal cortices the densities of glial cells and PrPsc deposits were positively correlated. In the FC and ITG, there was a negative correlation between the densities of the vacuoles in the white matter and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In the FC, vacuole density in the white matter was negatively correlated with the density of the diffuse PrPsc deposits in laminae II/III and V/VI of the adjacent grey matter. In addition, the densities of PrPsc deposits in the white matter of the FC were positively correlated with the density of the diffuse PrPsc deposits in laminae II/III and V/VI and with the number of surviving neurons in laminae V/VI. Conclusion: The data suggest significant degeneration of cortical white matter in vCJD; the vacuolation being related to neuronal loss in the lower cortical laminae of adjacent grey matter, PrPsc deposits the result of leakage from damaged axons, and gliosis a reaction to these changes.